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ABSTRACT

The phenomenon known as aeroelastic divergence is the focus of thiswork. The
analyses and experiment presented here show that divergence can occur without a
structural dynamic mode losing its oscillatory nature. Aeroelastic divergence occurs
when the structural restorative capability or stiffness of a structure is overwhelmed by the
static aerodynamic moment. This static aeroel astic coupling does not require the
structural dynamic system behavior to cease, however. Aeroelastic changesin the
dynamic mode behavior are governed not only by the stiffness, but by damping and
inertial properties. The work presented here supports these fundamental assertions by
examining a simple system: atypical section airfoil with only arotational structural
degree of freedom.

Aerodastic stability analysisis performed in the discrete time domain. The aerodynamic,
structural dynamic, and downwash relationships are cast as time-marching equations and
combined to form aeroel astic state space equations. The discrete time eigenvalues and
eigenvectors of the coupled system are computed. This method is advantageous because
the exact roots and the degree of stability of the system are determined, within the
framework of the aerodynamic and structural dynamic representations. The discrete-time
eigenvalues are transformed into the continuous time domain to facilitate their
Interpretation.

Results from the analysis have identified configurations of a simple model that exhibit
different types of dynamic mode behavior as the system encounters divergence. For the
simple configuration examined, these results indicate that low inertia properties and
elastic axislocation near the center of pressure promote divergence while the dynamic
mode persists. Largeinertias and large separation between elastic axis and center of
pressure promote divergence where the dynamic mode becomes a static mode.

A wind tunnel model was designed and tested to examine divergence experimentally.
The experimental results validate the analytical calculations and explicitly examine the
divergence phenomenon where the dynamic mode persists. Three configurations of the
wind tunnel model weretested. The experimental results agree very well with the
analytical predictions of subcritical characteristics, divergence velocity and behavior of
the noncritical dynamic mode at divergence.
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NOMENCLATURE

Symbols:

A Aerodynamic matrix

a Amplitude of cycles, used in logarithmic decrement method

B Aerodynamic matrix

b Semi-chord

C Aerodlastic force matrix

Cia Lift curve slope

D Structural dynamic matrix

E Downwash matrix

e Elastic axis position, measured positive aft from the center of
pressure

f Aerodynamic load vector

fu Frequency of torsional mode (Hz)

lg Torsional inertia

j Imaginary number, j =+/-1

k Reduced frequency, (k=wb/U)

Lwake Length of the wake

M Number of aerodynamic elements on the wing

viii



m Mass
N Total number of aerodynamic elements
n Time step number

Ncycles Number of cycles

Nwake Number of aerodynamic elementsin the wake

q Generalized structural coordinates

q Dynamic pressure

lo Radius of gyration

U Velocity

Vv Reduced velocity, (V=U/wyb)

W Downwash

X Vector of locations of vortices in the aerodynamic model; chord-
wise location

z Discrete time eigenvalue

At Time step size, temporal discretization

AX Aerodynamic element size, spatial discretization

r Vorticity vector

K Aerodynamic kernel function

Ka Torsional stiffness

M Moment

a Angle of attack



0 Logarithmic decrement

A Continuous time eigenvalue

A Intermediate Southwell parameter, slope of moment vs. rigid angle
of attack

M Mass ratio

p Density of air

W Frequency (radians/second)

Wy Frequency of torsional mode (radians/second)

1 Vector of locations of collocation points in the aerodynamic model

( Damping

Superscripts:

n time step number

Subscripts:

a pertaining to the torsional degree of freedom

mode pertaining to a specified mode

D pertaining to the divergence condition
) designation for an element of a matrix which liesin theith row,
jth column

wing quantity on the wing



wake quantity in the wake

TE trailing edge

A pertaining to the aerodynamics

S pertaining to the structure

0 vector or quantity at time 0

1 matrix multiplies vector at time step n

2 matrix multiplies vector at time step n+1
o] therigid value of a quantity

e the elastic increment of a quantity

Xi



INTRODUCTION

Aerodasticity is concerned with systems in which there is substantial interaction among
the aerodynamic, inertial and structural forces of an object. The phenomenon known as
aeroelastic divergence occurs when the structural restorative capability or stiffness of a
structure is overwhelmed by the static aerodynamic moment. The static aeroelastic
coupling that produces divergence does not require the dynamic system behavior to
cease, however. Aeroelastic changesin the dynamic mode behavior are governed not
only by the stiffness, but by damping and inertial properties.

The work presented supports these assertions by examining a simple system: atypical
section airfoil with only arotational structural degree of freedom. The analyses and
experiment to be presented show that divergence can occur without a structural dynamic
mode losing its oscillatory nature and becoming static.

The aeroelastic analysis method utilized in this study allows calculation of the
eigenvalues or modal characteristics of a system for subcritical, critical and supercritical
systems. The primary analysisis performed in the discrete time domain. The
aerodynamic, structural dynamic, and downwash relationships are cast as time-marching
equations and combined to form aeroelastic state space equations. The discrete time
eigenvalues and eigenvectors of the coupled system are computed. The discrete-time
eigenvalues are transformed into the continuous time domain to ease interpretation. This
method is advantageous, as the exact roots and the degree of stability of the system are
determined, to the extent of the accuracy of the aerodynamic and structural dynamic
representations. The method differs from traditional aeroelastic analyses. Background
information is provided on these traditional methods, which reveals differences between
the current method and each of them. Most of the traditional analyses produce results
that are only valid for neutrally stable behavior. Thislimitation is often not in the
stability method itself, but rather in approximations in the aerodynamic behavior. The
current analysis method resembl es the p-method to be discussed, but the fundamental
quantity, p, has been replaced by the discrete time unit delay operator, z.

The discrete-time aeroel astic eigenanalysis method was used to examine the aerodynamic
and structural parametric space of atypical section airfoil that had a single structural
degree of freedom. These results distinguished configurations where different types of
dynamic mode behavior were observed as the system encountered divergence. This
facilitated the design of an experiment which encountered divergence while the structural
dynamic mode persists.

A wind tunnel model was designed and tested to examine divergence experimentally and
validate the analytical calculations. All freedom of motion was denied to the airfail,



except for rotation about the elastic axis. Allowing only the single structural degree of
freedom eliminated the complications of interpreting modal interaction effects or
participation of multiple modes in the divergence mechanism. This simplicity allowed
the focus to be precisely on the coupling of the aerodynamics with the structural pitching
motion. Three configurations of the wind tunnel model were tested to examine the
effects of alimited range of torsional stiffness and inertia. All three configurations
exhibited divergence of a static mode existing simultaneously with adynamic mode. The
constraints imposed by the fundamental design of the model limit the potential source of
both the statically unstable mode and the measured dynamic mode. The mode that
originates as the structural dynamic pitch or torsional mode was tracked at subcritical
airspeeds. Asthe dynamic pressure was increased, the aeroel astic coupling changes the
damping and frequency of this tracked mode. At divergence, this mode appears as a
damped oscillatory mode. The frequency and damping of the dynamic mode are
complicated functions of the air-off system characteristics.

There are several notable examplesin aeroelastic literature where this category of
behavior has been produced by analysis or noted in experiment. More notably, however,
there is a century of experimentation in which this phenomenon has not been observed.
The current work utilizes avery simple system. In extension to more complicated
systems, the phenomenon may change or simply be more difficult to observe. This
category of system behavior has not been widely predicted by analysis and generally the
dynamic mode behavior is very damped, both factors making it difficult to locate in an
experimental setting.

Knowledge of the subcritical, supercritical and noncritical mode behavior is an asset for
many reasons. Understanding the fundamental physics of a system is a good thing al by
itself, of course. However, in addition, two practical reasons to have this knowledge
come immediately to mind. Test techniques for predicting divergence onset have
included frequency tracking of dynamic modes- divergence onset being indicated by the
nearness of this frequency to zero. For configurations where divergence occurs without a
structural dynamic mode losing its oscillatory nature this technique would not aert one to
the onset of divergence. A second practical reason to understand the noncritical mode
behavior isrelated to control applications. As active control of aeroelastic responses
becomes more commonplace, it becomes more vital to understand the behavior of system
modes which are noncritical for the uncontrolled or open loop system. Control law
designs which are model-based rely on modal knowledge of system characteristics, not
simply stability.

The body of this paper first presents a discussion of aeroelastic analysis methods and a
historical perspective of programs which studied the divergence phenomenon. In the
background material, a discussion is presented of past research that studied divergence
mechanisms. The present analysis method and results are then presented and discussed.
These results include a discussion and examples of the parametric database that
delineates regions where the dynamic mode behavior at divergence changes. Detailed



analytical results are presented for one configuration of the wind tunnel model design.
These results include stability analysis and study of the eigenvectors. Brief results are
presented for the two additional wind tunnel model configurations. Analytical results are
also presented for a set of parameters which produces divergence after the structural
dynamic originated mode has become non-oscillatory. The experiment is next described.
The model design process is summarized, as well as the hardware employed. The
experimental techniques and data reduction methods are addressed. The results of the
experiment are presented for the three configurations tested. The data are presented and
discussed in the following order: determination of the divergence condition, subcritical
techniques for predicting divergence onset, system behavior at divergence, and subcritical
modal characteristics. Analytical and experimental results are then compared in terms of
the divergence dynamic pressure and modal characteristics. The body of thiswork
concludes with a discussion, summary of conclusions and suggestions for future
directions.



CHAPTER ONE

BACKGROUND

Aerodasticity is concerned with problemsin which there is substantial interaction among
the aerodynamic, inertial and structural forces of an object. When a body moves through
the atmosphere, or when a body is placed in awind tunnel, aerodynamic forces act over
its surface. If the body is deformed, there is a change in the magnitude and distribution
of these surface forces. Thisredistribution causes additional deformations; theresult is
an interactive feedback |oop between aerodynamic loads and aircraft deflections.! Static
aeroelastic behavior is generally considered to be a study of the mutual interaction
between static aerodynamics and the stiffness, but not the inertia, of an elastic structure.

Background material is presented on several topics which unitein thiswork. Methods
which have been used to examine aeroelastic stability are discussed first. A historical
look at programs which have studied aeroelastic divergence is then presented. Focusing
on divergence by virtue of an aerodynamic-originated root, as distinct from aroot of
structural origin, then follows.

Aerodastic Stability Methods

Methods for analyzing the stability of an aeroelastic system set the foundation for the
work to be presented. The classica methods of solving for stability of the aeroelastic
equations are the p-method, the k-method and the p-k method. Each of these methods,
which go by severa names, will be discussed in the following paragraphs. In the
following methods, the non-dimensional Laplace operator, or differential operator, is
denoted p. In addition to these well-established methods, the g-method will aso be
briefly discussed.

The linearized equations of motion for aflexible aircraft contain unsteady aerodynamic
terms, which depend on the Mach number, M, and the reduced frequency, k. For al but
the simplest aerodynamic theories, the exact aerodynamic coefficients which are
dependent on M and k, have not been developed in the form of algebraic functions. Asa
result, aerodynamic coefficients are often computed for each desired Mach number for a
set of predetermined values of reduced frequency.

! Weisshaar, Terrence B., Fundamentals of Satic Aeroelasticity; Dowell, Earl H., Edward F. Crawley,
Howard C. Curtiss Jr, David A. Peters, Robert H. Scanlan and Fernando Sisto. A Modern Coursein
Aeroelagticity; Raymond L. Bisplinghoff and Holt Ashley, Principles of Aeroelasticity
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The k-method is also known as the V-g method or the American method of flutter
solution to determine the aeroelastic stability of a system. Many aerodynamic
formulations, such as the Doublet Lattice method, |ead to aerodynamic matrices which
are only valid for harmonic motion, p=ik. Using these simple harmonic loads, and
introducing an artificial structural damping factor, complex roots are obtained from the
equations. There are several well-known disadvantages to the k-method. The complex
eigenvalues obtained do not represent the actual damping or frequency of the system
modes except for neutrally stable roots, where the damping is zero. Many solutions are
required to obtain “matched-point” flutter boundaries. For a given airspeed, several
solutions with different frequencies may occur. Information regarding non-critical
conditions and eigenvalues is only qualitative.

The p-k method, sometimes referred to as the “British Method” or as Hassig's modified
version of the Frazer and Duncan method, attempts to improve upon the k-method by
allowing the reduced frequency to be complex. In 1971, in discussing the p-k method,
Hassig wrote, “It is generally conceded that it is desirable to formulate and solve the
flutter equation such that the solution leads to a value for the rate of decay. Ideally, this
requires the formulation of the unsteady aerodynamics matrix as a function of the
complex variable p. When one wants to work with exact theoretical aerodynamics one
must work with a formulation for harmonic motion and devise approximate methods to
determine the rate of decay.” The equations of motion are written in a form indicating
that the aerodynamic matrix is available only for harmonic motion. The eigenvalues of
this approximate system can be solved, producing complex roots. The aerodynamics are
then recomputed using the frequency that resulted from the eigenvalue computation. The
equations of motion in the p-k method are solved in an iterative fashion so that the
assumed value of k converges to the computed value of the imaginary part of a pre-
selected eigenvalue. The iterations are repeated, for a single mode at a time, until all the
modes have achieved convergence. There are several disadvantages to the p-k method.
While the results for the flutter condition are shown to be quite good, the eigenvalues of
damped modes are only approximate. The calculated damping is only good for low
levels of damping. Another disadvantage of the p-k method is the requirement to track
the eigenvalues of the system as the velocity or dynamic pressure is increasedn- For an
degree of freedom system, as each mode is tracked, the equations preidecealues.
Selection of the proper root is vital to the success of the method.

The p-method is the simplest method to understand, but perhaps the most difficult to
apply. Utilizing the p-method means simply solving for the complex eigenvalues of the
governing equations. Bisplinghoff and AsHiepmment on the process of finding
eigenvalues of an aeroelastic system to determine stability: “The system consisting of a
typical section in an airstream possesses dynamic eigenvalues. The critical (instability)
condition is defined to occur at the lowest speed ... at which the damping ratio of any
aeroelastic mode passes through zero. Mathematically they consist of values of the
complex (non-dimensional Laplace) variable, p, which cause the determinant of the

2 Raymond L. Bisplinghoff and Holt Ashley, Principles of Aeroelasticity
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(nondimensionalized coupled aeroelastic system) matrix to vanish. Because (the

aerodynamic velocity potentials) are transcendental functions (of p), there existsin theory

an infinity of such roots. So, with the air included, (the aeroelastic system) has an infinite
number of degrees of freedom. ... The most logical way of studying the dynamic
aeroelastic stability of a structure... could seem to be to calculate the root locus of p as a
function of airspeed and altitude. In engineering practice, however, this has not been the
customary approach, as ... more data are available on airloads resulting from simple
harmonic motion.” The p-method avoids the iteration process by using explicit
expressions for the aerodynamics. If the aerodynamics can be expressed as a sufficiently
simple function of p, the aeroelastic equations define a polynomial in p. The main
difficulty with the p-method lies in the derivation of appropriate aerodynamic

expressions. The p-method has been used with quasi-steady aerodynamics represented
by a first order differential equation, which ignores any effect of the wake. Two methods
of approximating higher order aerodynamic theories are the Pade method Bynpa

the minimum state method by Karpel and Hoatlléjhese methods apply rational

polynomial fits to the tabular values of the complex aerodynamic coefficients which were
derived for oscillatory motion. Another method of approximation was developed by
NissinT, in which a second order complex coefficient fit is used rather than a rational
function approximation.

A damping perturbation method, named the g-method, has recently been developed by
Cherf. This is a generalization of the k-method and the p-k method. The basic
assumption is that a first order Taylor series approximation in g can be developed. Chen
utilizes analytical continuation to replace the derivative with respect to g with a

derivative with respect to reduced frequency. He states that this substitution is valid in
the complete p-domain except along the negative real axis in subsonic flow. The g-
method produces results that agree well with well-established methods. His method also
yields some results in which aerodynamic lag divergence is illustrated. He explicitly
points out that damping results of the p-k method are valid for where damping or reduced
frequency are zero or where the change (derivative) in the aerodynamics with respect to
reduced frequency is zero.

Divergence, down through the ages

New flight vehicle concepts often invigorate the study of aeroelasticity, as new types of
interactions are anticipated or observed. Examining the literature on divergence, several

3Vepa, R., On the use of Pade Approximants to Represent Unsteady Aerodynamic Loads for Arbitrarily
Small Mations of Wings

* Karpel, Mordechay, and Sherwood Tiffany Hoadley, Physically Weighted Approximations of Unsteady
Aerodynamic Forces Using the Minimum-Sate Method

®Nissim, E., Flutter Analysis Using a New Complex p-Method

® Chen, P.C. A Damping Perturbation Method for Flutter Solution: The g-Method.
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programs or research areas stand out as having inspired the study of aeroelastic
divergence.

Consideration of various planforms sparked work in static divergence at the National

Advisory Committee for Aeronautics (NACA) in the 1940’s and 1950’s. Diederich and
Budiansky conducted analytical and experimental research into swept and tapered wings
which resulted in charts and approximate formulae for estimating wing divergence for
various configurations. This work demonstrated among other things, the dramatic
decrease in the divergence speed for a wing that was swept forward. The analytical work
investigating different planforms was continued by Diederich and’ Fasshey produced

an analytical method of calculating divergence of wings with various planforms including
delta wings. A summary of the NACA analytical efforts is provided by Diederich

The 1970’s and 1980’s brought a resurgence in the study of static aeroelastic effects.
Advances in composite materials lead to a reconsideration of the forward-swept wing
concept, which had been previously dismissed due to divergence. A study b{’Krone
showed clearly that “the detrimental effect of divergence on forward swept airfoils can be
successfully controlled. By tailoring the composite layer thickness distributions and
orientations a design can be obtained that produces optimum stiffness and strength
characteristics ... with little fear of suffering the weight penalties that have previously
been caused by the divergence phenomenon.” Static aeroelastic characteristics of
forward swept wings were investigated by many aeroelasticians. To note a few,
Weisshadr discussed forward-swept wing divergence from a fundamental concepts
point-of-view, and Blai¥ performed wind tunnel experiments which demonstrated the
fundamental relationships among sing sweep, composite fiber orientation and divergence
speed. An experimental study of the static aeroelastic divergence of forward-swept
wings was conducted in the NASA Langley Transonic Dynamic Tunnel by Ricketts and
Doggett®. Flat plate models with varying geometry were tested. Six subcritical response
testing techniques were formulated and evaluated at transonic speeds for accuracy in
predicting static divergence. Ricketts and Doggett concluded that, “in general, the static
methods seemed to consistently give better quality data than the dynamic methods.” As
pointed out by Doggett and Ricketts, dynamic methods of divergence prediction produce
inferior results to those produced by static methods. The current work addresses the issue
of why this is true. The dynamic behavior is governed not only by the stiffness (static)
properties but by the inertial properties. Dynamic methods work only if a complex mode

" Diederich, Franklin W., and Bernhard Budiansky, Divergence of Swvept Wings

8 Diederich, Franklin W., and Kenneth A. Foss. Satic Aeroelastic Phenomena of M-, W=, and [1-Wings.

° Diederich, Franklin W., Divergence of Delta and Swept Surfacesin the Transonic and Supersonic Speed
Ranges

9K rone, Norris J., Jr., Divergence Elimination with Advanced Composites.

" Weisshaar, Terrence B. Forward Swept Wing Satic Aeroelasticity.

2 Blair, Maxwell, Wind Tunnel Experiments on the Divergence of Swept Wings with Composite Structures
13 Rodney H. Ricketts, and Robert V. Doggett, Jr, Wind-tunnel Experiments on Divergence of Forward-
Swept Wings.



of the system becomesreal. A survey article by Shirk, Hertz and Weisshaar'® provides
an extensive reference list for other work on this subject.

Two forward swept wing airplanes were designed, built and flight tested. “Grumman
Aircraft Corporation built two X-29's. Phase 1 of the project, using aircraft No. 1, was
flown from December 1984 to 1988 and investigated handling qualities, performance,
and systems integration. Phase 2 of the X-29 program involved aircraft No. 2 and studied
the high angle of attack characteristics and military utility of the X229In the

development of the flight vehicle concept, dynamic analysis and wind tunnel testing of a
free-free configuration was performed by Miller, Wykes and Bro$naFheir analyses
revealed a different type of instability. The phenomenon involved a coupling between
the wing divergence mode and the aircraft short period mode, termed rigid body/ wing
bending flutter. The analytical results showed that the wing response was completely
different from the cantilevered case. While the divergence of the forward swept wing
flight vehicle was controlled by aeroelastic tailoring, the coupling of the wing
divergence-prone mode and the rigid body motion was controlled by enhancement of the
stability augmentation system (SAS). One of the research objectives for the X-29 flight
test program became correlating flight data with the predicted structural stability and
determination of the aeroservoelastic stability martfingn testing the X-29, methods of
divergence prediction as applied to flight tests were investigated. Schuster and Lokos
focused on applying the Southwell method to flight test data. Consideration of potential
errors lead to a more conservative pace in envelope expansion than might otherwise have
been required.

The 1990's topic in divergence centered around the National Aerospace Plane (NASP).
Researchers working on this program examined divergence of all-moveable surfaces,
which were representative of wing configurations under considerafrperimental

data was obtained in a supersonic test conducted in the Unitary Plan Wind Tunnel at the
NASA Langley Research Cent&r The wing models had low aspect ratios and highly
swept leading edges. The wings were attached by a single-pivot mechanism along the
wing root. The supersonic divergence was predicted to be primarily dependent on the
first wing pitch mode. Two subcritical response instability prediction techniques were
used: the static Southwell method and the dynamic frequency tracking method. The
improved Southwell method uses the change in slope of load-versus-angle of attack
measurements as dynamic pressure is increased to predict divergence conditions.
Accurate predictions were not obtained for this wind tunnel model using measurements
from the strain gauge bridges on the pitch stiffness elements. The frequency of the wing

¥ Shirk, M.H., T.J. Hertz, and T.B. Weisshaar. Aeroelastic Tailoring- Theory, Practice, and Promise.

% http://www.dfrc.nasa.gov/gallery/photo/X -29

18 Miller, Gerald D., John H. Wykes and Michael J. Brosnan. Rigid Body-Structural Mode Coupling on a
Forward Swept Wing Aircraft

Y Sefic, Walter J., and Cleo M. Maxwell, X-29A Technology Demonstrator Flight Test Program Overview
18 Stanley R. Cole, James R. Florance, Lee B. Thompson, Charles V. Spain and Ellen P. Bullock,
Supersonic Aeroelastic Instability Results for a NASP-like Wing Model.
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pitch mode was tracked as the dynamic pressure was incrementally increased in the wind
tunnel, and the model vibration frequency as it approached zero at the divergence
condition was monitored. Extrapolation of subcritcal measured frequencies was then
performed. This method was successfully used during the wind tunnel test to extrapolate
divergence dynamic pressure and as guidance in anticipating actual divergence
instabilities.

It isinteresting to note that the experimental data show that divergence occurred at
dynamic pressures only 3-6 percent beyond the dynamic pressure at which the frequency
reaches a value that isfifty percent of the wind off natural frequency. As described by
the authors, there is alarge change in frequency that is determined only by observing the
dynamic pressure of the instability itself. For two of the Mach numbers for the nominal
stiffness configuration, the nearest subcritical data indicates that the mode has a
frequency that is at 50% of itswind off value. For the other two cases, however, thereis
subcritical data which show the pitch mode frequency has dropped much further just
prior to divergence.

Non-traditional divergence

Static divergence that occurs without a structural dynamic mode losing its oscillatory
nature and becoming static is central to the current work. A very interesting body of
work on this subject existsin the literature. Studies will be discussed which were
performed by Rodden and various co-authors, Edwards, Dashcund and Martin and
Watkins. Already mentioned in the discussion of stability methods is the work of Chen,
in which aerodynamic lag divergence was also found.

From 1969 to 1994, publications by Rodden and various coauthors present analytical
results which demonstrate aerodynamic lag divergence and provide a method for
calculating the true damping of non-critical modes. In the first of these articles, Rodden
and Stahl™ performed aeroelastic stability analysis utilizing the p-method. A transient
formulation of the flutter and divergence problems was presented using aerodynamic
strip theory and an exponential approximation (the W.P. Jones approximation) to the
Wagner function. The limitation of the method presented in the referenced work isin the
aerodynamic strip theory approximation.

A cantilevered wing with 5 structural modes was analyzed. The divergence velocity was
found and agreed very well with static calculations. Using the p-method, they
determined the subcritical frequencies and dampings. They discovered that tracking the
frequency of the mechanical modes did not produce the instability. Tracking the
aerodynamic lag roots, which are explicitly present due to the W.P. Jones approximation,
produced the divergence instability. Their results show the first mode frequency curve
decreased rapidly at speeds slightly higher than the divergence speed. The frequency

¥ william P. Rodden and Bernhard Stahl, A Strip Method for Prediction of Damping in Subsonic Wind
Tunnel and Flight Flutter Tests.



went to zero in asmall range of velocity and then increased rapidly. Their results are also
show that the subcritical damping values differ significantly from the artificial damping
predicted by another stability analysis method, except for the instances where the modes
behave in anearly simple harmonic fashion.

Additional work published by Rodden, Harder and Bellinger®® compared the p-method
results from the above work to results utilizing a p-k solution. While the divergence
velocity predicted by the two methods agreed, this publication indicated that the
divergence mechanisms predicted disagreed. The p-method indicated that the mechanism
was aerodynamic lag divergence; the p-k method predicted divergence of the first
bending mode. The matter was revisited® and the p-k results reinterpreted. The
transition from the bending mode to the aerodynamic lag root was then recognized,
bringing the predicted divergence mechanisms into agreement- an aerodynamic lag
divergence.

The previously cited references analyzed a cantilevered wing. Thiswork was extended to
include a vehicle plunge mode™. Applying the aerodynamic approximations and p-
method analysis technique predicted instability of an aerodynamic lag root. Inthe
unrestrained system the instability is oscillatory as the unstable aerodynamic modeis
coupled with the vehicle plunge freedom.

The cantilevered configuration was revisited by Rodden and Johnson in 1994%. The
subsonic Doubl et-L attice aerodynamic method was employed in a p-k solution
procedure. This analysis shows no aerodynamic lag root present in the divergence
mechanism. They commented that the first bending frequency moved smoothly to zero
frequency. They assert in this publication that the demonstrated discontinuous behavior
of the eigenvaluesis not due to a physical phenomenon, but due to the change in the
definition of damping when aroot becomesreal. The authors do not comment in this
publication on anticipated inaccuracies due to aerodynamic modeling or inexactness of
the p-k solution for predicting subcritical characteristics.

Aerodynamic mode divergence was also illustrated in an analytical study by Edwards?*.
In this work, he discussed aerodynamic modeling in depth and notes some of the
shortcomings of different aeroelastic stability methods.

Edwards began with a solution of the linearized potential equation for the case of two-
dimensional airfoils undergoing simple harmonic motion in incompressible flow,
published by Theodorsen. He next extended the derivation to arbitrary motion or

2 William P. Rodden, R.L. Harder and E. Dean Bellinger, Aeroelastic Addition to NASTRAN.

2L William P. Rodden and E. Dean Bellinger, Aerodynamic Lag Functions, Divergence and the British
Flutter Method.

2 \William P. Rodden and E. Dean Bellinger, Unrestrained Aeroelastic divergence in a Dynamic Stability
Analysis.

2 William P. Rodden and Erwin H. Johnson, MSC/NASTRAN Aeroelastic Analysis User’s Guide.

2 John E. Edwards, Unsteady Aerodynamic Modeling and Active Aeroelastic Cantrol
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complex values of reduced frequency. He called thisthe generalized Theodorsen

aerodynamic representation. The expressions for the aerodynamic loads, lift and pitching
moment, were incorporated into typical section equations of motion. The stability of the
aeroelastic system was investigated using the p-method. The advantage of the p-method
isthat the exact roots and the degree of stability of the system are determined, to the

extent of the accuracy of the aerodynamic representation. Edwards’ presented a
derivation and analytical results which produce an aerodynamic mode at divergence.
This mode produces the motion of the diverging airfoil and occurs in addition to the
structural poles. Inherent in his work is the realization that the aerodynamic equations
are not constant coefficient equations. The fundamental theorem of &lgeaires that

an nth order polynomial equation is guaranteed to have exactly n roots for the case of
constant coefficients. In the case of the Theodorsen aerodynamic representation, the
coefficients of the governing polynomial are not constants and as such, no guarantee as to
the number of roots can be asserted.

The occurrence of this divergence mode was studied by locating the poles of the system
in the complex plane. Both the exact system model and a Pade approximate model were
used to locate these poles. The diverence speed was indicated for the exact model by the
emergence of an additional real pole on the positive real axis. The Pade model contained
an eigenvalue which migrated from the stable negative real axis into the unstable positive
real axis. Both results produced the same value for divergence speed.

Divergence in the case of a wing instead of a typical section was investigated by
Dashcunf, the distinction being that his model had wing modes, not rigid pitch and
plunge degrees of freedom. In the course of performing a flutter suppression study using
active control, Dashcund discovered that for his configuration a non-structural originated
root diverged. Divergence is mainly addressed by the analytical portion of the work.

The equations of motion were generated employing a Rayleigh-Ritz energy method. The
included modes were beam bending modes and rod twisting modes. The aerodynamics
were full unsteady 2-D strip theory. Dashcund writes: “Modeling the unsteady aero in

the Laplace domain in terms of an irrational, exact representation of the generalized
Theodorson function shows the presence of additional stability roots which are not
associated with the structural modes of the system nor with the feedback compensation or
control surface actuator dynamics. The existence of these additional aerodynamic system
roots, which includes the divergence root, is confirmed by the qualitatively good
agreement between predicted and experimental divergence boundaries for the active
flutter controlled wing.” These results provide an indication that aerodynamic-based
divergence can exist on wings. A recommendation presented in this work is that a
frequency tracking of all modes needs to be performed experimentally. This would show
that the still-existing structural dynamic modes are stable, while simultaneously

observing the divergent mode.

% Johnson, R.E, and Fred L. Kiokemeister, Calculus
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Martin and Watkins?® present and discuss analytical and experimental data for delta

wings. The data presented is of a summary nature. Only the divergence conditions are

given; no frequency information is provided. In their discussion of the transonic test

data, however, they say, “The divergence dynamic pressures were very sharply defined
and were marked by one or two large excursions of the tip of the model just prior to
divergence. ... The model motion, when divergence was reached, was quite rapid and
the deflection quickly increased until the model was bent beyond 90 degrees to the
airflow.” Their comments lead to speculation regarding the nature of the divergence
mechanism that they observed.

%D, J. Martin and C. E. Watkins, Transonic and Supersonic Divergence Characteristics of Low-aspect-
ratio Wings and Controls.
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CHAPTER TWO

ANALYSIS

A standard procedure for solving a structural dynamic problem isto employ
eigenanalysis to calculate the structural dynamic eigenvalues and eigenmodes. Recently,
this eigenval ue/eigenmode procedure has been extended to unsteady aerodynamics, and
to coupled aeroelastic equations'.

In computational fluid dynamics, CFD, there are two approximations that are typically
employed. Oneis the construction of acomputational grid, which determines the limits
of spatial resolution of the computational model. The second is the approximation of an
infinite fluid domain by afinite domain. Itisaprincipal purpose of the present
discussion to demonstrate that the computational grid not only determines the spatial
resolution obtainable by the CFD model, but also the frequency or temporal resolution
that can be obtained. Also, aswill be shown, the finiteness of the computational domain
determines the resolution of the eigenvalue distribution for a CFD model. Both of these
observations have important ramifications for assessing the CFD model and its ability to
provide an adequate approximation to the original fluid model on which it isfounded. To
these ends, afinite-wake, time-domain, discretized vortex lattice aerodynamic model has
been utilized.

Results of aerodynamic parametric variations are presented, as well as detailed discussion
of the trends produced by these systematic variations. The discussion includes the
parametric effects on both the discrete- and continuous-time aerodynamic eigenvalues.
These studies give insights into aerodynamic modeling in the discrete time domain
including how one may construct reduced order aerodynamic models using the dominant
aerodynamic modes.

The aerodynamic model was also combined with time-domain discretized structural
dynamic equations to examine the aeroel astic behavior of atypical section. Aeroelastic
responseis also discussed in terms of eigenanalysis results. Aeroel astic stability analyses
generally focus on the migration of the eigenvalues as a function of the velocity or other
flow parameter. Indeed, much flutter analysis in practice today uses at best only an
approximation to the true aeroelastic eigenvalues. Here, the true eigenvalues are found
for all aeroelastic modes without iteration. This enables an examination of the subcritical
modal characteristics of the system as well as the behavior the noncritical modes at
instability.

! Dowell, Earl H., Kenneth C. Hall, and Michael C. Romanowski, Eigenmode Analysisin Unsteady
Aerodynamics: Reduced Order Models;, Hall, Kenneth C., Eigenanalysis of Unsteady Flows about
Airfoils, Cascades and Wings.
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The eigenvalue migration is observed and the eigenvectors are investigated to determine
the relative participation of the aerodynamics and the structural dynamics.
Nondimensional parametric variations were performed to investigate the changing
character in the dynamic modes as the system diverges. Using this database,
configurations were identified and analyzed which exhibited different types of dynamic
mode behavior as the typical section became statically unstable. Specific emphasisis
paid to configurations where the dynamic mode persists at a nonzero frequency as the
system destabilizes.

The eigenvectors associated with the dynamic and divergent modes are also studied.
They provide awealth of information and can supplant or supplement the eigenvaluesin
providing stability information. They are studied from the standpoint of their own modal
content as well as their phase relationship to other eigenvectors of the system. They are
utilized to identify the relative importance of the structure and the aerodynamicsin a
given aeroelastic mode’s behavior.

Aerodynamic Studies

Aerodynamic Modeling

A Vortex Lattice solution to Laplace’s equation for incompressible two-dimensional flow
is utilized in this study. The flow over an airfoil with a certain number of vortex
elements on the airfoil and in the wake is now considered. The airfoil is modeled as a
two-dimensional flat plate. The airfoil and the wake are divided into segments, referred
to as aerodynamic elements. Vortex lattice aerodynamics are generated by placing
vortices of strengths to be determined at points on the airfoil and in the wake.
Collocation or control points, usually located aft of the vortex locations, are points where
the boundary conditions must be satisfied. Typical placement is for the vortices to be
located at the Y4-chord points of the aerodynamic elements. The collocation points are
typically placed at the %-chord locations of the elements.

The governing equations are presented by’talll shown in detail in Appendix A; they

are briefly summarized here. There are 3 basic relationships, described in the following
paragraph, which are combined to form a matrix equation for the vortex strength,
Equation 1where n and n+1 denote the next and the current discrete time sdinple.
vector of vorticities and w is a vector of downwashes at each of the collocation points.
The number of elements on the wing is denoted M, while the total number of elements is
denoted N.

[A]{r}n+1 + [B]{r}n = {W n+l Equation 1

% Hall, Kenneth C., Eigenanalysis of Unsteady Flows about Airfoils, Cascades and Wings.
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Three basic rel ationshi ps determine the contents of the A and B matrices seen in Equation

1. Theserepresent N equations with N variables. Thefirst of the three basic

rel ationships equates the velocity induced by the discrete vortices at the collocation

points to the downwash caused by the airfoil’'s motion. This relationship accounts for M
rows within the matrices where M is the number of spatial grid points on the airfoil or
wing. Applying Kelvin’'s theorem generates a second basic relationship utilized in
deriving the matrix equations. Unsteady vorticity is shed into the wake; its strength is
proportional to the time rate of change of circulation about the airfoil. The time step is
taken to be equal to the time it takes the vorticity to convect from one vortex station to
the next. This relationship accounts for the (M+1) row of the matrix equations. Once the
vorticity has been shed into the wake, it is convected in the wake at the freestream
velocity. This is the third basic relationship which appeaEgumation 1 as rows (M+2)
through (N-1). Vorticity convection also provides the final, Nth, row of the matrix
equations. Because the wake is modeled with a finite length, the last vortex element must
be treated specially. “Otherwise, the starting vortex would disappear abruptly when it
reached the end of the computational wake, producing a discontinuous change in the
induced wash at the airfoil. To alleviate this difficulty, ... the vorticity is allowed to
dissipate smoothly by using a relaxation factbr.”

The formulation and analysis of the aerodynamic model progresses in the following
manner. Discrete, time-marching equations are written as shown in Equation 1. Once
these equations are written, they inherently contain the approximations of the finite wake
and the discretization. A discrete Fourier transformation is performed on the unforced
equations, producing the z-plane representation, Equation 2.

A= (— A_lB)'o Equation 2

The discrete time eigenvalugsand the eigenvectorS,, are extracted from these
equations. These provide insight into the behavior of the aerodynamic model and also
provide a method for constructing a reduced order model. These eigenvalues are then
converted to the continuous time domairplane, through a zero order hold
transformation, Equation 3.

1= log(2)

Equation 3
At
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Baseline Configuration

Asthefirst of several numerical examples, the flow over an airfoil with 20 vortex
elements on the airfoil and 180 elements in the wake, equally spaced, is now considered.
Thiswill be referred to as the baseline case. The (finite) length of the wake thus extends
9 chord lengths. The eigenvalues and eigenmodes of the flow can be computed by
established methods. Because there are 200 elements in the model, 200 eigenvalues

result.

The discrete time (z-plane) elgenvalues, extracted from Equation 2, approximately form a
circle centered at the origin, as shown in Figure 1. In addition to these eigenvalues, there
are afinite number of eigenvalues at the origin. The number of eigenvalues at the origin
is equal to the number of segments or grid points on the wing. This conclusion follows
from examining the rank of the system matricesin equation 1, from the numerical results
obtained here, and appears to be supported by the results presented in Hall?, though it was
not noted in this previous work. Eigenvalues at the origin in the discrete time domain
transform to -co in the continuous time domain.
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The continuous time eigenvalue distribution for the baseline case is shown in Figure 2.

Thereal part of the eigenvalue isindicative of the damping and the imaginary part isthe
damped frequency of each fluid eigenmode. Examining the eigenvalues of the

aerodynamic matrix in the continuous domain produces several observations. The

continuous domain eigenvalues are discretely spaced and are arranged in “arms” that
emanate from the origin and reach up and down in the left half plane. Additionally, the
real parts of the arms asymptotically approach a limiting value.
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Figure 2 Eigenvaluesfor basgline case; continuoustime eigenvalues, A

The presence of positive aerodynamic damping is evidenced by the arms lying in the left
half plane. The primary contribution to the damping appears to lie with the overall flow
field, however, there is additional damping due to the presence of a vorticity relaxation
factor at the last wake element. The relaxation factor used in the vortex lattice model
provides energy dissipation in the wake; as the relaxation factor is decreased, more
energy is dissipated and the aerodynamic damping increases. If the number of
aerodynamic boxes within the wake is increased, the last box will be a smaller percentage
of the total wake length and thus, the influence of the relaxation factor will be

diminished.
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Parametric Variations

Three aspects of the aerodynamic modeling significantly impact the eigenvalue
distribution: the size of the aerodynamic elements, the number of these elementsthat lie
in the wake, and the length of the wake. The three aerodynamic configurations, detailed

in Table 1, compared against each other two at atime, produce the three comparison
cases, which are organized in Table 2 and discussed next.

Aero Config Airfoil Wake
No. No. of Normalized | Normalized No. of Normalized Normlized
elements element size | airfoil length elements element size | wake length
1 20 1 1 180 1 1
(Baseline)
2 20 1 1 360 1 2
3 40 Y5 1 360 7 1

Table 1 Aerodynamic Configurations

Comparison| Aerodynamic Configurationg Parametric Variation Quantity Held Constapt
Case No. Compared
1 2 3

I X X Size of aerodynamic | Number of aerodynamig
elements in wake elements in wake

Il X X Number of aerodynami¢  Size of aerodynamic
elements in wake elements in wake

1l X X Size and number of Length of wake
elements in wake

Table2 Comparison Casesfor Parametric Variations

The three comparison cases are discussed in terms of their discrete time eigenvalue
distributions (z-values), their discrete-to-continuous time domain transformations (z-

transformations) and their continuous time eigenvalue distributions (A-values).

Comparison case | compares aerodynamic configurations 2 and 3, examining the effects
of varying the size of the aerodynamic elements while maintaining the number of
elements which lie in the wake. Because the number of wake elements remains fixed,
configuration #2 has a wake that is twice the length of the wake in configuration #3 and
elements which aretwice aslarge. Although not shown, the discrete time eigenvalue
patterns for configurations 2 and 3 are identical because the number of elementsin each
wake isidentical. However, changing the size of the aerodynamic elements changes the
transformation, which must be applied to convert the discrete time system to continuous
time. Thisdifferencein transformation produces the change in continuous domain
eigenvalues, asillustrated in Figure 3.
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It is easily shown that the frequency of each eigenvalue scales linearly with the

aerodynamic element size. The maximum frequency of the arms can be determined a

priori by utilizing Shannon’s sampling theorem. The aerodynamic eigenfrequencies are
bounded from discrete time considerations similar to those that predetermine the discrete
Fourier transform frequenciésThe maximum frequency, that can be resolved would

have 1 cycle spanning two aerodynamic panels. Using the velocity to relate the spatial
and temporal sample sizes, Equation 4, leads to maximum frequency that can be resolved,
Equation 5.

U:Ax

— Equation 4
At

U _
max(a)) = E Equation 5

®Hardin, J.C., Introduction to Time Series Analysis.
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Thus, changing the aerodynamic element size changes the frequencies of the
aerodynamic eigenvalues. As the size of the elements becomes infinitesimal, it is
speculated that the eigenvalue arms will cover the frequency rangedrom +

It should be noted in studying Case | that the number of eigenvalues has remained
constant in going from configuration 2 to configuration 3, while the frequency range has
doubled. Thus, the density of the eigenvalues has halved. The implications of this will
be further discussed in studying Case lII.

Comparison case Il compares aerodynamic configurations 1 and 2 and examines the
effect of varying the number of aerodynamic elements in the wake while holding their

size constant. The number of aerodynamic elements in the wake determines the number
of discrete time eigenvalues comprising the pseudo-circular pattern. As more elements
are placed in the wake, the more crowded pattern expands outward towards the unit circle
and the damping of each aerodynamic mode. As the element size decreases, the radius of
the pseudo-circular pattern asymptotically approaches 1. In discrete time eigenvalue
analysis, an eigenvalue lying on the unit circle represents a neutrally stable system. In

the continuous time domain, the imaginary axis is the line of demarcation for stability. It

is thus anticipated that the additional boxes in the wake force the “arms” of the

continuous time eigenvalues closer to the imaginary axis. Figoear this out. As

more elements are added to the wake, the closer the aerodynamic roots get to those
associated with simple harmonic motion. Thus, changing the number of aerodynamic
elements in the wake changes the damping of the aerodynamic eigenvalues. As the
number of elements goes to infinity, it is speculated that the arms will move to the
imaginary axis.
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Figure4 Casell: Influence of varying the number of aerodynamic elementsin the wake.
Continuous time eigenvalues, A

It should be noted in studying Case 1, as the wake length is increased, leaving the size of

the aerodynamic elements constant, the frequency range of the continuous time

eigenvalues remains constant. The number of aerodynamic elements determines the

maximum frequency. Doubling the number of elements in the wake means doubling the
number of eigenvalues on the “arms.” Twice as many eigenvalues reside in arms of the
same length. Hence, the continuous time eigenvalue distribution has become denser.

Comparison case Il compares aerodynamic configurations 1 and 3 and examines the
effects of varying simultaneously and in inverse proportion, the number and length of
aerodynamic elements in the wake, such that the wake length remains constant. The
expected trends for the behavior of the arms of the continuous time eigenvalues are
difficult to predict because, in going from configuration 1 to configuration 3 there are
multiple tendencies: increasing the number of elements tends to move the arms closer to
the imaginary axis; decreasing element size tends to extend the frequency range of the
arms. The combined result on the continuous time eigenvalues, shBigaria 5, is that

the arms of the eigenvalues lie approximately the same distance from the imaginary axis,
while the frequency range of configuration 3 is twice that of configuration 1. This
corresponds to the effects of smaller element size of configuration 3. Thus, the spacing
of the eigenvalues is approximately constant between the two analysis runs.
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Figure5 Caselll: Influence of simultaneously varying the size and number of aerodynamic elements
in the wake, maintaining a constant wake length. Continuoustime eigenvalues, A

An approximate formulafor eigenvalue spacing is derived using the frequency range and
the number of eigenvalues. The maximum frequency was found using Equation 5.
Accounting for positive and negative values, the frequency range is twice this. Dividing
this range by the number of elements or eigenvalues in the wake, and recognizing that the
element size times the number of elements in the wake is the wake length produces the
relationship given in Equation 6.

2nJ
I—wake

Aw= Equation 6

The reader may recognize that thisis similar to determination of the discrete Fourier
transformation frequencies, as determined by the length of the timerecord. The
eigenvalue spacing is approximate due to the eigenvalues not lying on the imaginary axis,
that is, due to the discretization-induced damping. For the case of the element size
becoming infinitesimally small, the formulais exact.
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Thus, the effect of the finite wake is to produce discretely spaced eigenvalues, instead of
acontinuous line. As the wake length becomes infinite, it is speculated that the arms of
discretely spaced eigenvalues form continuous lines emanating from the origin.

Discussion of Aerodynamic Studies

The study of aerodynamic eigenvalues using the vortex lattice code has led to some basic
insights. The eigenvalues have been shown to be artifacts of the discretization and the
finite length wake.

The effects of discretization are controlled by two independent factors. The size of the
elements determines the range of frequencies covered by the eigenvalues, while the
number of elementsin the wake drives the damping. Their effects are shown to be
independent, as one controls the transformation from discrete to continuous time, and the
other controls the discrete time eilgenvalue pattern. The effect of the finite wake isto
produce discretely spaced eigenvalues, instead of a continuous line.

The following speculations regarding the limiting cases are offered. Asthe size of the
elements becomes infinitesimal, the eigenvalue arms will cover the frequency range from

too, As the number of elements goes to infinity, the arms will move to the imaginary
axis. As the wake length becomes infinite, the arms of discretely spaced eigenvalues
form continuous lines emanating from the origin.

Aerodynamic eigenvalues have been shown to be artifacts of the discretization, which
exist regardless of the airfoil or wing motion applied to the model. The eigenvalues exist
even with no airfoil or wing motion. A direct analogy with the feedback control problem
can be drawn for aeroelastic systems. The poles of the controller exist, even when the
system is open loop. The system is open loop when the feedback path is cut. Three
scenarios produce open loop behavior: the sensor information is not provided to the
control law, the controller output is not applied to the physical system, or the control law
has a zero gain. The last case is analogous to the aeroelastic feedback scenario when the
velocity is zero. Just as the poles and zeros of the control law are independent of the
feedback gain, the poles or eigenvalues of the aerodynamic system are independent of
velocity.

It should be noted that this analogy is not be carried further because standard root locus
rules of migration for increasing gain are not directly applicable to the aeroelastic
scenario, except with the simplest aerodynamic models. The open loop aerodynamic
poles are complicated functions of the velocity, which vary with airspeed.
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Aerodastic Studies

The discrete time aerodynamic model can be coupled with a discretized structural
dynamic model to produce the following time-marching aeroel astic equations of motion,
which can then be analyzed to determine the behavior of the system. The vector g
contains the structural dynamic degrees of freedom, the vector f represents the
aerodynamic loads and the matrices, D; and D, describe the coupling between the
aerodynamic and structural dynamic quantities present in an aeroel astic system.

qun+1 + qun +fMl-g Equation 7

The aerodynamic loads, f, can be expressed in terms of the unsteady vorticities on the
wing, I.

fn+l _ (;Zrn+1 + Clrn Equation 8

For a system with no external disturbances, the downwash on the airfoil, w, is produced
by the motion on the airfoil.

wh = Eqn Equation 9

Combining Equation 1, 7, 8, and 9 produces the aeroelastic system equations, Equation
10.

D, Coumd™ m; coud' oo

H— E A %E + HO B %’E = %)E Equation 10

The Typical Section

Thetypical section isa structural and aerodynamic idealization where the motion and the
airflow can be represented as two-dimensional. The airfoil section is considered rigid
and its permitted motion limited to vertical translation and rotation about a fixed axis.
Here, the typical section motion has been further limited to permit only rotation. The
boundary condition or mounting system is such that the structural stiffnessis represented
by atorsional spring. The axis of rotation is termed the elastic axis; its position is
measured positive aft from the center of pressure. The geometric parameters are
illustrated in Figure 6. The non-dimensional parameters of interest for a single degree-of-
freedom typical section are defined in Table 3.
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Figure 6 Typical section with pitch freedom

Description Parameter Symbol Relationship with
dimensional quantities
Torsion mode frequency Wy Kc/
la

Elastic axis location e/b eb
Mass ratio m m/(span pair b%)
Radius of gyration I [ %

mb?
Reduced velocity Vv U/wgb

Table 3 Nondimensional parameters of aer oelastic system

Details of the structural dynamic equations are presented in Appendix A. They are
represented in generic notation in Equation 7. The generalized coordinate vector, q,
contains only a single degree of freedom, i.e. angle of attack, and its time derivative.

Stability Analyses

The stability of the aeroelastic system was analyzed by solving the equations of motion
for a series of reduced velocities. Eigenanalyses of the discrete time systems were
performed on each set of equations and the system eigenvalues tracked. The eigenvalues
were transformed into the continuous time domain using a zero order hold
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transformation. Stability can be inferred from either the discrete or the continuous time
root locus.

A detailed look at the stability analysis for wind tunnel model configuration # 2 is
presented. The parameters used in this analysis are summarized in Table 4. This
configuration diverges while the dynamic mode that originated as the structural mode
persists.

Description Par ameter Value Units
Semi-chord b 4 inches
Span span 21 inches
Radius of gyration Fo 0.459

mass ratio M 51.42

torsion mode frequency Wy 495 | radians/second
Elastic axis location e/b 0.375

Number of aerodynamic M

elements on the wing 10

Total aerodynamic N

elements 100

Density of air Dair 0| dinches/inch®
Aerodynamic relaxation a

factor 0.996

Size of aerodynamic AX inches
element 0.8

Table 4 Parameter valuesused in analysis, wind tunnel model configuration #2

The discrete time root locusis presented in Figure 7. These z-plane plots show the
imaginary part versus the real part of the eigenvalues. The structural-dynamic-originated
mode eigenvalue and the aerodynamic-originating eigenvalues, referred to collectively as
the aeroelastic eigenvalues, migrate as the reduced velocity isincreased. Figure7
somewhat resembles the plot of the eigenvalues for the uncoupled aerodynamic equations
which was presented in Figure 1.  The complex aerodynamic-originating eigenvalues
appear relatively undisturbed by the coupling with the structural dynamic equations. In
addition, the single structural dynamic eigenvalue can be seen near the unit circle,
indicating that it is more lightly damped than the aerodynamic eigenvalues. It undergoes
substantial movement with the increase in velocity.

An instability occurs when an eigenvalue lies outside the unit circle. For this system, this
Is observed on the positive real axis. The axes are expanded to more closely examine the
behavior near instability, Figure 8. Thisfigure shows the migration of the structural-
dynamic-originating eigenvalue, and a so the interplay with severa aerodynamic
eigenvalues. The lowest complex aerodynamic eigenvalueis clearly influenced, as well
astherea aerodynamic eigenvalues, one of which becomes unstable. It isdifficult to
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further study system behavior from these graphs because each velocity produces
eigenvalues that essentially belong in different z-planes. Thiswill be discussed in detail
in a subsequent section of this paper.
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Figure 7 Discretetimeroot locusfor configuration # 2
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The aeroelastic system is converted to the continuous domain by zero order hold
transformations. The behavior of the continuous time domain eigenvaluesis shown in
Figure 9. For clarity, only the region near the origin is presented. The influence of
velocity on the aerodynamic eigenvaluesis now evident. Asin the aerodynamic case
previously discussed where changing the size of the aerodynamic elements changed the
transformation from the discrete to continuous time, the same effect is now observed for
the aeroelastic case as the time step size is changed. Recall that the aerodynamic
parametric studies were conducted at afixed velocity. The aerodynamic eigenvalue
“arms” are stretched with increasing reduced velocity. As velocity increases, the
individual complex eigenvalues’ frequencies increase at constant damping.
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Figure 9 Continuoustimeroot locusfor configuration #2

Increasing velocity produces a migration in the structural dynamic mode also. The
coupled mode that originates as the structural dynamic mode will be referred to here as
simply the dynamic mode of the system. This mode is a pure structural mode only at
zero airspeed. For any finite velocity, it and all other modes are strictly speaking
aeroelastic modes. The lowest reduced velocity for which this system was analyzed was
0.2. The structural dynamic mode for this nearly-zero velocity isindicated by a solid
trianglein Figure 9. Theroot lies at 49.5 rads/second, which agrees with the torsional
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natural frequency. It ishelpful to simultaneously examine Figure 9 and Figure 10 when
Interpreting root migration. Figure 10 showsthe real and imaginary parts of each
eigenvalue plotted versus reduced velocity.
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Figure 10 Continuous time eigenvalues for configuration # 2 as functions of reduced velocity; a)
Imaginary part, b) Real part

Increasing velocity produces a larger aerodynamic feedback. This aeroelastic coupling
causes the dynamic mode frequency to decrease as velocity increases. Thistrend holds
true until the system becomes unstable. This configuration destabilizes as a zero
frequency root, aerodynamic in origin, migrates across the imaginary axis, that is,
divergence occurs.

The eigenvalues of the system for the divergence reduced velocity are distinguished in
Figure 9 by solid squares. It is apparent that the dynamic mode still exists with a nonzero
frequency when the system becomes unstable. At this velocity, the dynamic mode is a
coupled structural and aerodynamic mode; the modal content and resultant system
behavior will be addressed subsequently.

Attention is now turned back to the aerodynamic roots, focusing on thereal axis. The
aerodynamic roots which lie on the real axis are of primary concern in the study of
divergence. Two real poles originate from the present aerodynamic model. The
existence of aerodynamic roots at zero velocity is addressed in the discussion portion of
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this paper. For increasing airspeed, both roots initially become more stable. However, at
approximately 75% of the divergence reduced velocity, one root changes direction and
eventually destabilizes. Thereal part of the eigenvalues, shown in Figure 10, is
indicative of the damping characteristics. Thereal part of aroot that islosing damping
will shrink. Thisindicates that energy is not being dissipated by this mode as effectively
as at lower velocity. Thereal part of the dynamic root is becoming smaller, showing that
itislosing its ability to dissipate energy. Once the static root destabilizes, the dynamic
root, structural in origin, no longer tends towards instability.

Modal Characteristics at Divergence: Non-dimensional Parametric Variations

The configuration analyzed above exhibited divergence while the dynamic mode
persisted. This behavior is predominant throughout much of the parametric space. This
design space will now be explored. Variationsin the structural non-dimensional
parameters were performed. For each set of parameters, the aeroel astic equations of
motion were constructed and eigenvalues found. At the divergence reduced velocity, the
modal characteristics can be observed, specifically the frequency and damping of the
mode which originated as the structural dynamic mode.

A database of modal characteristics at divergence was generated to identify regionsin the
parameter space where the divergence mechanism changes from being associated with
the structural root versus an aerodynamic root. The parameter variation results were also
utilized in the design process for the wind tunnel configurations. The structural dynamic
parameters varied in the database are elastic axis location, e/b, radius of gyration, r4, and
mass ratio, .

The natural frequency of the pure structural torsional mode, wy, was aso varied in the
initial studies. Changing wy, however, was found to have no effect on the eigenvalue
migration pattern as reduced velocity varied. From steady aerodynamic equations, it can
be readily observed that wy has no direct impact on the reduced velocity of divergence.
Thus, the natural frequency is not studied in the parameter variation database.

Varying the three parameters produces a four-dimensional parameter space. Thus, the
results can not be shown by asingle plot. Sample results are presented here as three-
dimensional surface plots. For each surface, one of the parametersis held at afixed
value. Three surfaces are presented showing the ratio of the dynamic mode frequency at
divergence normalized by the pure torsion frequency, wp, Wy . Three corresponding
surfaces for the damping ratio at divergence, {p, are also presented.

The elastic axis position is fixed for the surfaces shown in Figure 11 and Figure 12.
Figure 11 presents a surface of frequency of the dynamic mode at divergence, normalized
by the air off pitch frequency. The surface shows the variation of the divergence
frequency as a simultaneous function of both radius of gyration and massratio. The
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presented surface is for anondimensional elastic axis position of 0.375, which
corresponds to the wind tunnel model configurations. The solid square on this surface
corresponds to wind tunnel configurations 2 and 3. The circle shown on the surface
corresponds to wind tunnel model configuration #1, which has a higher radius of
gyration. Note that the two wind tunnel model configurations liein different plateaus of
the surface. Thisdifference will be shown to be indicative of a qualitative changein
system characteristics. Thisfigureisone dice from the parametric variation design
space, here afour-dimensional space. Asthe elastic axis moves closer to the center of
pressure, the surface becomes less smooth. The ridge that is shown in the back left
corner of this parametric slice becomes a sudden hill. A trough developsin front of the
hill and an additional ridge emerges which runs from low values of mass ratio diagonally
across the space to low values of radius of gyration. The front right corner dropsto a
form a plateau where the frequency ratio becomes zero, or the dynamic mode has become
real.

Figure 14 presents the companion surface showing the damping ratio at the divergence
condition. The damping information is presented as the angle between the imaginary axis
and the eigenvalue. Thisangleis shown in radians, with a maximum magnitude of the
angle of /2 or 1.57 radians.

08~
0.6+

04"

0 v

Figure 11 Surface of uxn/wy asa function of massratio and radius of gyration. Elastic axis position is
fixed, e/b=0.375.
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Figure 12 Surface of {p asa function of massratio and radius of gyration. Elastic axisposition is
fixed, e/b=0.375.

The radius of gyration isfixed for the surfaces shown in Figure 13 and Figure 14. Figure
13 presents the surface of frequency of the dynamic mode at divergence, normalized by
the air off pitch frequency for aradius of gyration of 0.5, which roughly corresponds to
the primary wind tunnel model configuration. The surface shows the variation of the
divergence frequency as a simultaneous function of mass ratio and elastic axis position.
The solid square on this surface corresponds to wind tunnel configurations 2 and 3.
Again, thisfigure is one sice from the parametric variation design cube. Asthe radius of
gyration decreases, the surface becomes overall smoother. Asthe radius of gyration
increases, the trough in the middle of the mass ratio range migrates to lower values and a
new trough forms at high values. The new trough at higher mass ratios grows as radius
of gyration increases and the overall surface resembles two plateaus connected by a steep
grade. The plateau in the frequency ratio surface at high mass ratios has a value of zero,
where the dynamic mode has become real. Figure 14 presents the companion surface
showing the damping ratio at the divergence condition.

33



g ",
|
i
|
|
|
o,
|
|
i
|
|
|
i
|

0.6

“ ’

200

elb . -

M

Figure 13 Surface of uxp/wy asa function of massratio and elastic axis position. Radiusof gyration is
fixed, r,=0.5.



-0.8

-1.2

-1.4

0.4

elb 0

Figure 14 Surface of {p asa function of massratio and elastic axis position. Radiusof gyration is
fixed, r,=0.5

The massratio is fixed for the surfaces shown in Figure 15 and Figure 16. Figure 15
presents the surface of frequency of the dynamic mode at divergence, normalized by the
air off pitch frequency for amass ratio of 50, which roughly corresponds to the wind
tunnel model configuration 2. The surface shows the variation of the divergence
frequency as a simultaneous function of elastic axis position and radius of gyration. The
solid sguare on this surface corresponds to the wind tunnel configurations 2 and 3. The
rolling hills at low values of elastic axislocation and the gentle slope into a single plateau
at high values of elastic axis location are characteristic throughout the range of mass ratio
considered, which was from 20 to 200. Lower values of mass ratio make the hills more
dramatic, while higher mass ratios make the valleys sink to zero. Figure 16 presents the
companion surface showing the damping ratio at the divergence condition.
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Figure 15 Surface of uyp/wy, asa function of elastic axis position and radius of gyration. Massratiois
fixed, p=50.
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Figure 16 Surface of {p asa function of elastic axisposition and radius of gyration. Massratiois
fixed, p=50.

As seen in the sample parameter surfaces, there are regions where the structural dynamic
roots have become real, indicated by the frequency ratio becoming zero. These regions
indicate where the divergence mechanism will ook like the traditional interpretation of
divergent behavior. Thisinformation occursin arelatively small region of the
nondimensional parameter space, however. Thisregion isshown in Figure 17.
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Figure 17 Non-dimensional parameter space wheretraditional diver gence mechanism
occurs
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From the parametric database, many observations can be made. The surfaces of
frequency ratio and damping at divergence are neither uniform nor monotonic. However,
in general locating the elastic axis just aft of the center of pressure tends to make the
typical section diverge in atraditional manner. Large radii of gyration also produce this
effect, as do large mass ratios.

The three-dimensional parameter variations reveal that the parameter spaceis divided
into three distinct regions. 1) The structural dynamic root migrates to the real axis asthe
reduced velocity increases. This mode diverges, asin the traditional interpretation of
divergence. 2) A real aerodynamic eigenvalue diverges. The structural dynamic mode
still exists as a complex mode at the corresponding reduced velocity. 3) A real
aerodynamic root diverges. The structural dynamic root has previously become real,
migrated further left along the real axis, becoming more damped, and then becoming
complex again prior to divergence.

The wind tunnel model configurations were designed to fall into the second category and
demonstrate divergence of a static mode whose origin lies in an aerodynamic root.

Three wind tunnel model configurations will be discussed in this paper. Analytical
stability results for what will come to be known as configuration # 2 have already been
presented. Each of these configurations diverges as a static mode which originated in the
aerodynamic model becomes unstable, while the dynamic mode with its origin in the
structural model persists at a non-zero frequency. The structural dynamic parameters for
all three configurations are provided in Table 5. For definitions of non-dimensional
parameters, see Table 3.

Config lo Ka )y fo 4 Mo H
# (slinch- (Ix- (rads/sec) (H2)
in) in/deg)
1 0.1147 .90 21.2 3.37 0.0046 0.741 107.9
2 0.021 0.90 49.5 7.88 0.0053 0.459 51.4
3 0.021 2.78 87.1 13.86 0.0035 0.462 50.8

Table 5 Structural dynamic parameter s associated with wind tunnel model configurations

Configuration #1 has the same torsional stiffness as configuration #2, but the trailing
edge segment is made of Tungsten, which substantially increases the pitch inertia. The
eigenvalue migration is qualitatively different than that presented for configuration #2.
The root locus will be presented shortly. Configuration #3 has the same pitch inertiaas
configuration #2, but the torsional stiffness was increased. The eigenvalue patternis
identical to that of configuration #2. The changein torsiona stiffness manifestsitself in
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changing the divergence dynamic pressure of the system, but the non-dimensional locus
does not change at all.

Table 6 liststhe analytical calculations for divergence conditions for the three
configurations. Note that the non-dimensional divergence condition isinvariant with
torsional stiffness. Thisis shown by the agreement of the reduced velocity for
configurations 2 and 3. Also note that the physical divergence condition isinvariant with
pitch inertia. Thisis shown by the agreement of the velocity or dynamic pressure for
configurations 1 and 2.

Configuration# | Reduced Veocity Dynamic Pressure
Velocity
(in/sec) (mph) (psf) (N/m?)
1 8.89 754 42.8 4.6 222
2 3.8 754 42.8 4.6 222
3 3.8 1324 75 14.25 687

Table 6 Analytical calculation of divergence conditions

The divergence conditions cal culated using the aeroel astic eigenanalysis can be compared
to the divergence conditions calculated using the equations of static equilibrium of the
system. The equations of static equilibrium for the single degree of freedom typical
section can be written by equating the aerodynamic and structural moments which act at
the elastic axis, Equation 11. The aerodynamic moment for a symmetric airfoil can be
expressed in terms of the lift curve slope and total angle of attack, which is comprised of
therigid angle of attack, 0o, and the elastic increment, a., Equation 12. The structural
restorative moment, Equation 13, is proportional to the elastic increment. Setting them
equal and rearranging produces aratio of elastic increment to rigid angle of attack,
Equation 14. For afiniterigid angle of attack, the elastic increment will become infinite,
diverge, if the denominator of the right hand side becomes zero. This providesthe
expression in Equation 15 for calculating the divergence dynamic pressure. Recasting
the equation in non-dimensional quantities produces Equation 16.

Ma=Mg Equation 11
Ma =0SeC, (a0 +ae) Equation 12
Mg =Kg0e Equation 13
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The divergence conditions were cal culated for the three wind tunnel model
configurations, utilizing the parameterslisted in Table 5. The results, summarized in
Table 7, compare ailmost exactly with the analytical results shown in Table 6.

Configuration Divergence Dynamic Divergence Reduced
Pressure Velocity
(psf)
1 4.69 8.89
2 4.69 3.80
3 14.49 3.80

Table 7 Static equilibrium calculations of diver gence conditions

Divergence of an eigenvalue which originates in the aerodynamic model is contrary to
the traditional interpretation of system behavior at divergence, although several similar
phenomena have been reported by earlier researchers, as discussed in the introduction
and background sections of thisthesis. The modal content of the instability and the
dynamic mode are addressed in the following study of the eigenvectors which provides a
deeper insight into the observed phenomena..

Eigenvector Study

The eigenvectors of the aerodynamic and/or aeroelastic system are now examined in

detail. Whileit is common to examine the eigenvalues for information on system

behavior and stability characteristics, it is quite uncommon to attempt to garner insights

from the eigenvectors. As noted by Bisplinghoff and Ashley? “(the aeroelastic

eigenvalues) have associated with them eigenfunctions when the complex representation
is used. Since (the absolute magnitude of eigenfunctions, or eigenvectors) may be
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specified arbitrarily, the mode shape is completely defined by the amplitude ratio and a

phase angle between ... degrees of freedom. This information has only minor interest in
stability studies, and modes are often not even calculated. Their variation with airspeed
can throw some light on the physical nature of (the instability), however.”

Determination of the flutter mode shape is the most common use of the eigenvectors
resulting from an elastic analysis. The eigenvectors contain a wealth of information that
is only hinted at by the eigenvalues. An individual eigenvector can reveal the frequency
and damping of the associated eigenvalue. It also provides a ratio of the energy present
in the mode due to each component of the state vector. In the case of the eigenmodes
analyzed here, an eigenvector provides information on the modal content: whether a
mode should be considered as primarily structural, primarily aerodynamic or as a hybrid,
aeroelastic mode. The orthogonality or lack of orthogonality among the eigenmodes
indicates whether energy can be transferred from one mode to another. This can be
important in understanding when, how and why an aeroelastic system destabilizes.

Aerodynamic Eigenmodes

The eigenmodes of the aerodynamic system are considered first. These modes do not
change as velocity increases, but it is instructive to know what the modes look like. The
aerodynamic eigenmodes contain the modal vorticity for each aerodynamic element.
Eight of the eigenmodes are shown in Figure 18. The eigenmodes are presented for an
aerodynamic model with 10 elements on the wing and 180 elements in the wake. The
modal vorticities are plotted at the chord-wise location of the associated aerodynamic
elements.

The first mode, a real mode, resembles a static pressure coefficient distribution over the
wing, with little participation from the wake. The second mode is also a real mode
resembling a static pressure distribution over the wing. However, this mode contains a
large amount of wake participation. The remaining aerodynamic modes are complex and
are comprised primarily of an oscillating wake. The wing vorticities are insignificant
compared to those in the wake. The modes are ordered by increasing frequency. Each
mode contains a single frequency; as the frequency increases or as the mode number is
advanced more oscillations are observed in the wake.
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Figure 18 Selected aer odynamic eigenmodes

Aeroelastic Eigenvectors

The aeroelastic eigenvectors are now studied from several perspectives. The first
approach taken in examining the aeroel astic eigenvectorsisto study the behavior
associated with individual modes. Following this, the relationship between two
eigenvectorsis examined.

In anumerically stiff set of ordinary differential equations®, the system behavior is seen
to be dominated by the lightly damped and unstable modes. The disparity in thetime
scales of components of the system allows the overall behavior to be studied by

*Kincaid, D.R., and E. W. Cheney, Numerical Analysis. Mathematics of Scientific Computing
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observing only afew eigenmodes of the system. Thus, in this discussion of system
behavior, the modal participation factors associated with only afew modes are examined.
Three eigenvectors are considered: 1) the dynamic mode which originates as the
structural dynamic mode; 2) the least stable real mode which originatesin the
aerodynamics and becomes the source of divergence and 3) the second real aerodynamic

mode. Thisinformation is repeated for referencein Table 8.

Eigenvector Numbering

Real or Complex

Origination

1 Complex Structural dynamic mode
2 Red Aerodynamic mode
3 Red Aerodynamic mode

Table 8 Eigenvector numbering and description

Examination of individual eigenvectors

The first approach taken in examining the aeroelastic eigenvectorsis to study the
behavior associated with individual modes. The eigenvector associated with a particul ar
eigenvalue can be viewed as the set of modal participation factors for each degree of
freedom. Note that the eigenvectors are invariant under the transformation from discrete
to continuous time domain. A proof of thisisgivenin Appendix B. The dynamic mode
and the destabilizing static mode are examined in detail; the vorticity portion of the
eigenvectorsis emphasized.

The analysis results presented here are for wind tunnel model configuration #2. The
eigenvectors have been normalized to have unity magnitude and phased such that the
structural dynamic generalized displacement coordinate, a, has zero phase.

The dynamic mode near zero velocity is considered first. The modal participation at a
low reduced velocity, V=0.225, is presented for the dynamic modein Figure 19. At this
velocity, the mode is almost a pure structural pitch mode. The associated eigenvalueis
identified in the continuous time root locus, Figure 9, by the diamond symbol. The real
and imaginary parts of the modal participation are plotted as a functions of chord-wise or
downstream position. At thislow velocity, the aerodynamics are being driven at the
frequency of the structural mode. The portion of the eigenvector associated with the
vorticity at each aerodynamic control point, referred to as the vorticity participation,
shows that most of the aerodynamic energy associated with this mode is in the wake. The
first ten participation factors correspond to elements on the airfoil. Only these vorticities
can produce forces on the airfoil. At thisvelocity, there is very little aerodynamic energy
being imparted to the airfoil.
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Figure 19 Eigenvector associated with dynamic mode near zero velocity, associated continuous time
eigenvalueA =-.16 +j 49.2

The wake portion of the vorticity participation appears as a negatively damped sinusoid
when viewed spatially. The eigenvector provides a snapshot of the vorticity distribution.
Initial examination of the data may lead one to conclude that the system isunstable. In
fact, the opposite isindicated. For a stable system, the vorticity being shed from the wing
into the wake will decrease as time advances. The vorticity on the last wake element at
time n is the same as the vorticity on the first wake element at time n-Nyae. Thus, the
gpatial vorticity distribution could also be thought of as atime history, where time
originates at the wake trailing edge and proceeds towards the airfoil.

Near the divergence reduced velocity, the eigenvector associated with the dynamic mode
contains significant participation from both the structural dynamic and the aerodynamic
states. Figure 20 shows the vorticity participation spatially for avelocity just above
divergence, V= 3.85. The number of oscillations to be expected in the wake, Neyges, Can
be estimated using the frequency of the associated eigenvalue, Wmoge, the reduced
velocity, V, and the number of aerodynamic discrete elementsin the wake and on the
arfoil, Nyake and M:

« N
Ncycles = tmode-“wake Equation 17

w, M1V

Using the values for the divergence condition resultsin a prediction of 0.48 spatial
oscillations; the vorticity participation in Figure 20 is consistent with this estimate.
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Figure 20 Eigenvector associated with dynamic mode at the diver gence velocity, associated

continuoustime eigenvalueA =-17.7 +j 25.9

It isaso instructive to view the eigenvectors in terms of the magnitude and phase angle.
The vorticity portion of the dynamic mode eigenvector is presented in thisformat in
Figure 21. For 5 values of reduced velocity, listed to the left of each magnitude plot, the
magnitude and phase of the eigenvector components are plotted as a function of the
chord-wise location of the aerodynamic box. The modal vorticities on the wing are
shown by the circles. The wake modal vorticities are shown by dots, which appear as
solid lines due to the dense spacing. The last element of the wake has not been shown in
these plots- it will be discussed separately.

The magnitude plots show that as the velocity isincreased and approaches the divergence
speed, more modal energy is contained in the aerodynamic portion of the eigenvector.
The divergence reduced velocity for this configuration was calculated as 3.8. The
magnitude plots indicate that beyond this velocity, the wing vorticity participation
decreases. As previously discussed, the vorticities on the wing determine the importance
of the aerodynamic feedback. Asvelocity increases, the aeroelastic coupling in the
dynamic mode increases as evidenced by the growing magnitudes of wing vorticities.

The phase plots also provide much useful information. The dynamic mode eigenvector
can be viewed asif the aerodynamics are being forced at the modal frequency. Asthe
airspeed advances, the frequency of the excitation changes. As shown in the cases of the
zero airspeed and divergence, the number of cycles expected in the wake can be
approximated using Equation 17. The phase information from Figure 21 is summarized
in Table 9. The cyclesin the wake are estimated and an approximate value of the
frequency is calculated. These are shown in the table to compare amost exactly with the
Imaginary parts of the associated eigenvalues.
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Figure 21 Vorticity portion of dynamic mode eigenvector for several velocities, magnitude and phase

as functions of chord-wise
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1 55 48 48.1
2 2.6 45 445
3 14 36 36.7
35 1.0 30 29.9
5 .56 24 24.1

Table 9 Dynamic mode frequencies estimated from wake portion of dynamic mode eigenvector and

calculated from analysis
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The aeroelastic system studied destabilizes as areal eigenvalue moves into the right half
plane. The vorticity participation factor associated with this mode resembles a pressure
coefficient distribution on the airfoil elements, while the wake contains almost no
participation except for the last element. The vorticity participation factor at an example
reduced velocity, chosen here to correspond with divergence, V= 3.85, is presented in
Figure 22. Asthe reduced velocity changes, it is the participation of the last wake
element is especialy interesting. The magnitude and phase of this element of the
eigenvector is plotted versus reduced velocity in Figure 23. Note that these eigenvectors
have an overall magnitude of 1. Initially, nearly all of the vorticity participation resides
in the last element of the wake. Asvelocity increases, all of the wake elements begin to
participate in the mode. Just prior to divergence, the participation of the last wake
element drops sharply. At the divergence velocity, all of the vorticity participation ison
the airfoil; the wake factors are zero. As the system moves beyond the divergence
velocity, the behavior of all of the vorticity participation factors change. The last wake
element quickly becomes influential again, but now with vorticity that is negative, or out
of phase, with the airfoil vorticity. Asvelocity is further increased, the participation of
the last wake element smoothly, asymptotically, approaches zero. Also beyond
divergence the overall wake vorticity participates.
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Figure 22 Eigenvector associated with the unstable static mode just above the diver gence velocity

Transition from stability to instability produces dramatic changes in the associated
eigenvector. While the eigenvalue smoothly traverses across the imaginary axis, the
character of the vorticity participation changes sharply.
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Figure 23 Vorticity participation of last wake element, associated with the real eigenvalue
that destabilizes

Vorticity Ratios as | ndicators of Modal Participation

Each of the modes of an aeroelastic system contains structural and aerodynamic
participation to varying degrees. This participation changes as the velocity increases and
the feedback from the aerodynamics into the structure increases. Furthermore, the
structural contributions and the aerodynamic contributions are different for different
configurations. Asan indicator of the aerodynamic contribution to the dynamic mode
and the divergence mode, the modal vorticities on the wing were summed. These sums
were normalized by the summation of the wing and wake modal vorticities. Thisratio
indicates the amount of aerodynamic participation in the mode.

Four configurations are examined in Figure 24. Theroot loci are shown in the left
column. The roots are shown which correspond to the structural dynamic mode, which
originates as a complex pair, and also the two real aerodynamic eigenvalues. The zero
airspeed values for each of the roots are shown in the plot with open triangles. Asthe
reduced velocity is increased towards the divergence condition, the roots of the system
are shown by the dots. The value of each root at the instability dynamic pressureis
denoted by asolid triangle. The vorticity ratios are shown in the right column. The
vorticity ratios are presented for the dynamic mode which is structural in origin, (mode
1), and the divergent static mode which is aerodynamic in origin, (mode 2), as functions
of reduced velocity. The area above each curve represents the energy dissipated into the
wake. The areabelow each curve represents the modal energy imparted to the structure.
A higher curve indicates that alarger portion of the modal energy can be attributed to the
aerodynamics.
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Thefirst configuration is the previously analyzed wind tunnel model configuration #2.

The dynamic mode persists for this configuration at divergence. The root locus shows

the dynamic mode frequency at greater than half the natural frequency of the air off

system. This suggests that the structural influence is a dominant participant in the mode.

The vorticity ratio tells a similar story. The dynamic mode’s vorticity ratio is shown by
the smaller symbols. The aerodynamic contribution to the mode is low throughout the
reduced velocity range. Thus, the dynamic mode is primarily a structural dynamic mode.
Revisiting the root locus, it can be observed that the primary contribution of the
aerodynamics to this mode is a large amount of damping. The vorticity ratio associated
with the static divergence mode is also shown. At divergence, the aerodynamic
participation is shown to increase dramatically and dominate the mode. Consideration of
the root locus and the vorticity ratio indicates that divergence for this configuration is
primarily aerodynamic.

The second configuration shown in Figure 24 corresponds to wind tunnel model
configuration #1. The frequency of the dynamic eigenvalue has decreased significantly
at divergence compared to the previous configuration. The vorticity ratio indicates that
the dynamic mode has more aerodynamic participation than the previous configuration.
The dynamic mode is still observed to have a nonzero frequency at divergence and be
primarily driven by the structural participation. The divergent mode is primarily
aerodynamic in nature.

The third configuration shown does not correlate with a constructed wind tunnel model
configuration. It is analyzed to show the progression of the aerodynamic participation in
the dynamic mode. The vorticity ratio indicates that the dynamic mode has more
aerodynamic participation than the previous configurations.

The fourth configuration illustrates the divergence mechanism that is traditionally
envisioned. The parameters used in this example do not represent a buildable
configuration with known materials, but are presented to show that the analysis
methodology is not single-minded. This configuration was generated by modifying the
parameters associated with wind tunnel model configuration #1. The elastic axis was
moved to ¥4 inch aft of the center of pressure. The radius of gyration was then doubled.
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Description Par ameter Value Units
Semi-chord b 4.0000 inches
Span span 21.0000 inches
Radius of gyration la 1.6034

mass ratiio U 108.0000

torsion mode frequency Wy 19.6000 radians/second
Elastic axis location elb 0.0561

Number of aerodynamic M 10.0000

elements on the wing

Total aerodynamic N 180.0000

elements

density of air Pair 0.0000 dinches/inch®
aerodynamic relaxation a 0.9960

factor

size of aerodynamc AX 0.8000 inches
element

Table 10 Parameter Valuesfor traditionally diver gent configuration

The corresponding root locus, which is presented in the last row of Figure 24, indicates
that the structural dynamic originated mode frequency decreases with increasing reduced
velocity until they turn from a complex pair of roots into two real roots. Shortly after the
pair become real, one root becomes more highly damped and one becomes unstable. As
the reduced velocity is increased, the real aerodynamic eigenvalue migrates toward the
left, or damped condition. The structural dynamic eigenvalues migrate towards the red
axis. Asthey hit the axis, the complex pair of eigenvalues both becomereal. One of
them becomes more highly damped and the other one becomes unstable.

The non-dimensional parameters used in this last example case can be produced by
physical parameters which approach buildability only for semichord values which exceed
wind tunnel blockage guidelines. Also, there are afew additional issues regarding the
potential for successful fabrication and testing of this configuration. In locating the
elastic axis so near the center of pressure, thereisvery little room for error or changein
the fabrication process. The dynamic pressure of the instability is proportional to the
inverse of the distance from the center of pressureto the elastic axis. If a1/16 inch error
existsin the location of the pivot axis, the divergence dynamic pressure would be 75% of
the anticipated value. A second consideration is the potential for a camber mode to be
induced. Theairfoil isa1/32-inch thick aluminum shell. At thetrailing edge, atungsten
mass is attached with set screws. Moving the rotational axis forward, which isrequired
to generate the traditional mechanism configuration, means moving the rotational axis
away from the supporting, stiffening interior spars and also giving the tungsten alonger
moment arm. These factors will make the airfoil section tend to deform in the
streamwise direction. All analyses to date have been performed assuming arigid airfoil.
The airfoil section, however, isaclosed cell. Thismeansthat itisafairly stiff structure,
and the deformation may not be a cause for concern.
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Modal Moment Comparison

The structural and aerodynamic moments can also be calculated by using the eigenvector
information. The static structural moments corresponding to each mode were cal culated
using the static moment equation, Equation 13, and the modal results for angular
displacement. The static aerodynamic modal moments are calculated in similar fashion,
employing the static aerodynamic equation, Equation 12. The results are compared in
Figure 25. In this comparison, the angle of attack component of the dynamically
determined eigenvectors was employed. For each velocity, the ratio of the aerodynamic
to static moment is aratio of dynamic pressure to divergence dynamic pressure. This can
be shown by comparison of Equation 2 and Equation 3. Subcritically, for each mode,
the static structural modal moment is less than the aerodynamic static moment. Thus,
each mode has enough structural restorative power to counteract the effect of the
aerodynamic moment, and the modes are stable. In the supercritical case, the static
mode, labeled mode 2, indicates that the aerodynamic moment istoo large for the
structure to restore the system to equilibrium. Thisindicates that the mode is statically
unstable, as indicated previously by the eigenvalue analysis.
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Figure 25 M odal moments, configuration #2
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The dynamic modal moments associated with any eigenvector must have equal structural
and aerodynamic components as defined in the dynamic equations. This modal quantity
is aso shown in the figure for both of the modes represented. A difference between the
static and dynamic moment is the inclusion of the oscillatory portion of the motion. For
the dynamic mode, particularly subcritically, there is alarge oscillatory component. This
isillustrated by the large different between the static structural moment for mode 1 and
the dynamic moment for the same mode. Another significant difference between the
static moment results and the dynamic moment results occurs supercritically. The static
equations essentially enforce a neutral stability assumption. Because the static mode,
labeled mode 2, is unstable, there is alarge difference between the static and dynamic
moments.

Orthogonality between eigenvectors

Comparisons were made between pairs of eigenvectors, employing the techniques
demonstrated by Afolabi, Pidaparti and Y ang”.

The eigenvectorsidentified in Table 8 were compared, two at atime by finding the phase

angle between them. Modes which are in phase, or have 0° separating their orientations,
will tend to feed energy into each other and potentially amplify the motion. Modes which
are out of phase, or have angles of 180°, will tend to act against each other, canceling out
the energy and motion of each other. Orthogonal modes, generally thought to be
incapable of exchanging energy from one mode to another, would be at 90° to each other.
Near a modal coalescence, a loss of orthogonality could be expected to occur. The angle,
6, between the eigenvectots,andyy;, is computed as the inverse cosine of the

normalized inner product.

AWt B
Ailles | 2

For complex modes, inner product is seldom real, resulting in an inability to compute the
arccosine. This difficulty is avoided by employing “realification” of the complex
eigenvectors. Realification of a complex array is a stacking of the real parts and then the
complex parts, turning a vector of lengtimto a vector of lengt@n. For either the real

or the realified complex case, this procedure is essentially finding a weighted average of
the phase of all eigenvector components.

6 j =cos Equation 18

In analyzing the current aeroelastic system, the coordinates are not all of comparable
physical or mathematical quantities- some being structural dynamic generalized
coordinates and some being aerodynamic vorticities. This makes interpretation of the

® Afolabi, Dare, Ramana M.V. Pidaparti, and Henry Y. T. Yang, Flutter Prediction Using an Eigenvector
Orientation Approach
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results more subtle and difficult. Figure 26 shows the phase angles between the
eigenvectors as functions of reduced velocity. All components of the eigenvector were
utilized in this comparison.
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Figure 26 Angle between eigenvectors as a function of reduced velocity, using all elements of the
eigenvector

The angle between the two real modes’ eigenvectors, denoted 2 and 3, is shown in the

figure with a dashed line connecting circular symbols. At low velocities, the

eigenvectors are nearly out of phase. The angle between the two real modes shows a
sudden transition initiated just prior to divergence. At the divergence velocity, the two

real eigenvectors are orthogonal; above the divergence velocity, the phase overshoots 90°
and then asymptotically reapproaches 90°.

The angles between the real modes and the dynamic mode are oscillatory as reduced
velocity increases. The angle between the dynamic mode and the mode, which
destabilizes is shown in the figure with a solid line connecting square symbols. The

angle between the dynamic mode and the stable aerodynamic-originated mode is
indicated by a dotted line connecting triangular symbols. For both comparisons, the
frequency of the oscillations decreases and the magnitude increases. The underlying
modeling which produces these characteristics is addressed by separately considering the
eigenvector in portions corresponding to the wake vorticity components, the wing

vorticity components and the structural dynamic generalized coordinates.

The vorticity in the wake is considered first. Details of the vorticity portions of the

dynamic mode eigenvector were previously presented for several reduced velocities,
Figure 19, Figure 20 and Figure 21. The angles between the eigenvectors were computed
as previously, except that only the subset of the eigenvector components corresponding to
vorticities in the wake were included. As before, the last wake element has been ignored.
Figure 27 shows the angles between subsets of the eigenvectors as functions of reduced
velocity. There are oscillatory patterns shown relating the phase angle of the dynamic
mode eigenvector to both real eigenvectors. As in the case which utilized all components
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of the eigenvectors, the frequency decreases and the magnitude increases as reduced
velocity increases. From the detailed eigenvector plots of the dynamic mode, it can be
seen that the cycling of the phase is more rapid at the lower velocities. The growing
magnitude indicates the same thing. The more cycles that the phase goes through, the
smaller the average phase of the vector. For the comparison with the stable real
eigenvector (eigenvector 3), the phase angle smoothly oscillates for the entire range of
velocity presented. The phase angle between the dynamic mode and the unstable mode,
however, undergoes a change near the divergence velocity. The slope of the phase angle
curve changes sign. Thisis attributed to the change in sign of the real mode eigenvector.
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Figure 27 Angle between eigenvector s as a function of reduced velocity, using wake vorticities
without last element

Lack of orthogonality serves to indicate the potential for energy being passed from one
mode into another. The wake portion of the eigenvector does not have a direct impact on
the aeroel astic feedback forces generated. To offer insight into this behavior, the wing
vorticity and structural dynamic portions of the eigenvectors are examined. Because of
the mismatch in physical quantities represented, they are considered separately.

The vorticity on the wing is examined next. The angles between the eigenvectors were
computed, as before, except that only the portions of the eigenvectors corresponding to
vorticities on the wing were included. Figure 28 shows the angles between subsets of the
eigenvectors as functions of reduced velocity. The real modes are seen to be in phase
throughout the velocity range presented. The relationships of the dynamic mode to the
real modes are nearly identical, as would be expected after examining the phasing
between the real modes. Near zero velocity, the dynamic mode is nearly orthogonal to
the real modes. This orthogonality is quickly lost asthe airspeed isincreased. This
indicates that the modes can not exchange energy when there is no velocity. From a
physical standpoint, thisindicates that there is no aeroelastic feedback, or interaction of
the structural and aerodynamic entities, when the velocity islow. Asthe airspeed
increases, the angle stays relatively constant. The upslope that starts just prior to
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divergenceis attributed to redistribution of vorticity between the real modes, whichis
also indicated by examining the angle between eigenvectors 2 and 3.
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Figure 28 Angle between eigenvector s as a function of reduced velocity, using wing vorticities only

The structural dynamic generalized coordinate contributions to the eigenvectors are

examined next. The angles between the eigenvectors were computed, using only the

portions of the eigenvectors corresponding the structural portion. Figure 29 shows the

angles between subsets of the elgenvectors as functions of reduced velocity. It has been
mentioned that the eigenvectors were normalized such that the angle of attack generalized
coordinate has a phase of 0°. This is true for each eigenvector individually examined.
The structural dynamic eigenvector segment consists of this angular displacement and the
velocity of this coordinate. For this reason, the angle between the eigenvectors, which is
a weighted average for all components of the eigenvector included in the analysis, does
not have a phase of 0°. The angle between the real modes, indicated by the dashed line
connecting circular symbols, begins at low velocity with the eigenvectors nearly in phase.
At divergence, there is a sharp transition, which shows that they are orthogonal at
divergence, and are out of phase for velocities above divergence. The orthogonality at
divergence indicates that modal energy can not be transferred from the unstable mode
and dissipated by the stable real mode. For velocities below the divergence speed, the
modes are nearly orthogonal, indicating that little energy is transferred between modes
through the structural dynamic participation. As the velocity approaches divergence, the
angle between the dynamic mode and the unstable mode changes. The modes start to
lose their orthogonality. Just prior to divergence, the separation angle is approximately
70°, so some structural dynamic energy can be exchanged between the modes. At
divergence, the modes are orthogonal, so no energy is exchanged between them. Beyond
divergence, the modes are tending towards being out of phase with each other, indicating
that the modal motions would oppose each other. Meanwhile, the stable real
aerodynamic mode and the dynamic mode are becoming more in phase. Coupling
between these two modes is highly likely at higher velocities. This coupling can be
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observed also from the root locus of the eigenvalues for velocities above divergence. The
migration pattern of the dynamic mode eigenvalue seen in Figure 9 is clearly influenced
by the presence of the stable real mode.
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Figure 29 Angle between eigenvectors as a function of reduced velocity, only the structural dynamic
portion of eigenvectorsused

The eigenvectors were scaled such that the angular displacement has a phase of zero. It

makes sense then, to examine the structural dynamic portion of the eigenvectors by

considering only the contribution of the angular velocity. These results are shown in

Figure 30. The phase indicates that, at divergence, the unstable mode’s eigenvector
phase changes by 180°. The dynamic mode starts orthogonal to the real modes, at 90°.
This indicates that the dynamic mode either leads or lags the real modes of the system,
such that the modes are orthogonal. As the reduced velocity increases, the phase between
the dynamic mode and both real modes tend towards becoming in phase. At divergence,
however, the curves separate. The angle between the structural dynamic mode and the
unstable mode changes suddenly by 90°. The slope of the curve also changes such that it
is now increasing with increasing velocity. As velocity increases, the increasing phase
difference indicates that the modes tend towards becoming out of phase; they will no
longer interact to accentuate each other’s motion. The phase difference between the
stable mode and the dynamic mode continues its migration towards 0°, indicating that the
modes are becoming more in-phase and the will be more apt to exchange modal energy at
post-divergence velocities.
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Figure 30 Angle between eigenvector s as a function of reduced velocity, only angular velocity

component

Figure 31 Angle between eigenvectors as a function of reduced velocity, using only last element of the
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Computational Issues for Simultaneous Solution of Aerodynamic and Structural
Equations

Transformation Compatibility

To incorporate the discrete time aerodynamic model into aeroel astic equations, the
structural dynamic model must be cast in discrete time aso. The structural dynamic
equations contain first and second derivatives that could be approximated using a central
difference technique. Whilethisis convenient and easy, this method resultsin a
mismatch of discrete time transformations. Central differencing produces discrete time
equations to which afirst order Tustin transformation®, Equation 19,

must be applied to obtain the proper continuous time results.

_2(z-)
T At (z+1)

Equation 19

The Tustin transformation is equivalent to the first term in a series expansion of the zero
order hold transformation presented in equation 2. In these transformations, the sample
interval, At, establishes the relationship between the discrete time eigenvalues, z, and the
continuous time eigenvalues, A. The aerodynamic equations which were generated with a
zero order hold discretization, are solved simultaneously with the discretized structural
dynamic equations. Thus, it is desirable to have structural dynamic equations that would
also be correct when a zero order hold transformation is applied. Thisis easily
accomplished through standard discretization techniques’. Accepting the mismatch in the
transformations results in a phenomenon that resembles aliasing. However, asthe time
step becomes small, the zero order hold transform and the Tustin transform become
approximately equivalent.

Aliasing

The equations have been constructed in the discrete time domain. Given data at discrete
times, atransformation can be utilized to approximate the response in continuous time.
There are limitations to discrete time transformation methods; aiasing is the primary
concern®'To avoid aliasing, a continuous time signal must have 2 samples per period of
period of the highest frequency to be resolved. The aerodynamic equations arose from
the fundamental concept of vorticity being convected downstream at avelocity, U. The
equations are valid only if the relationship U=Ax/At is maintained. It isthus observed

® Phillips, CharlesL., and H. Troy Nagle, Jr, Digital Control System Analysis and Design.
" Oppenheim, Alan V., and Ronald W. Schafer, Discrete-time Signal Processing
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that the minimum velocity, at which the system may be accurately analyzed, is set by the
gpatial discretization and the maximum frequency that isimportant to the problem.
Another interpretation is that for frequency and velocity ranges of interest, the minimum
number of aerodynamic elements required to avoid aliasing can be approximated. This
can serve as aguideline in selecting the spatial discretization required for agiven
problem. There are additional implications of the discrete time effects when the
aerodynamic equations are combined with the structural dynamic equations or control
laws.

Methods of Stability Analysis

The aeroelastic stability analyses, which require variation of the velocity, were performed
using asingle spatial aerodynamic discretization. This was accomplished by adjusting
the temporal discretization to produce the proper velocities. There are several
complications in performing the analyses in thismanner: (1) aseparate transformation
rule must be applied for each velocity; and (2) interpreting the discrete time elgenvalues
Isnot intuitive. The aerodynamic matrices are unchanging for different velocities, but the
matrices which couple them to the structural dynamics are not. The resulting aeroelastic
eigenvalues change with each velocity. The migration of the eigenvaluesin the discrete
time domain is not due solely to the velocity change, but to a combination of velocity and
sample rate change.

A brief study was conducted to look at the results when a consistent sample rate was
utilized, meaning that as the velocity changed, the spatial discretization changed. This
required constructing a new aerodynamic model at each velocity. There was negligible
effect on the continuous time eigenvalues. The discrete time eigenvalue pattern
associated with the structural dynamic mode changed significantly. It was observed,
however, that the discrete time eigenvalue pattern in this case is nearly identical to the
pattern produced when the eigenvalues from the nominal analysis method are
rediscretized using the consistent sample rate.
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CHAPTER THREE

EXPERIMENT

An aeroel astic experiment was conducted in the Duke University Engineering wind
tunnel facility. The goals of this test were to validate the analytical calculations of non-
critical mode characteristics and to explicitly examine the aerodynamic mode divergence
phenomenon. Additionally, because analyses show that the dynamic response of the
system does not indicate divergence, a secondary goal of the testing was to evaluate
different divergence onset prediction methodologies. To these ends, the simplest
applicable model that could be devised was designed, fabricated and tested.

Model Design

The model design process first required that the desirable traits of the model be
identified. Thus the non-dimensional parameter space was then examined to identify
regions of parameters which would produce the best design. Physical parameter spaces
were then examined to determine a configuration that could be built out of realistic
materials and tested in the facility available and with reasonable expectations of
instrumentation and data processing techniques.

The desirable traits that were utilized in the model design range from the patently obvious
to the sublime. It was desirable to have the model shaped like an airfoil. Thisisan
important limitation- the shape restricts the strength, stiffness and inertia combinations
which are achievable. It isalso desirable that the model be constructed of machinable
materials. Thisisalimitation, particularly in terms of an upper limit on the density and a
lower limit on the strength and stiffness of available materials. It was also desired to
have awing structure that would not introduce additional modes into the experiment.
Thisrequired that the airfoil berigid in both the chord-wise and span-wise directions.

The facility in which amodel is tested places additional limitations on the design space.
The model design must diverge at a dynamic pressure that the wind tunnel can reach. To
ease mounting and eliminate tip aerodynamic phenomena, it was desirable to have awing
which would span the entire tunnel. To eliminate gravitational effects from the
experiment, it was desirable to mount the wing between the floor and ceiling rather than
spanning from one sidewall to the other. These two requirements fix the span. Itis
desirable to avoid tunnel blockage effects. The cross-sectional area of the tunnel,
coupled with expected deflection angles of the model, sets an upper limit on the airfoil
chord length if blockage isto be avoided.
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The above requirements limit the design space before consideration of demonstrating the
desired phenomenon are addressed. It is desirable to find a place in the design space
which satisfies all of the above constraints and also demonstrates aerodynamic mode
divergence. For clarity in identifying that the system has diverged while the dynamic
mode persists, the designed model should have a high structural dynamic mode frequency
at divergence. Low damping of the dynamic mode at the divergence condition is also
desirable. The lower the damping of this mode, the more obvious the modal
characteristics will appear. Further, it is desirable to demonstrate, through simple
configuration changes to the model, different types of divergent behavior.

The non-dimensional parametric variation database of modal characteristics at divergence
was discussed previously. The structural dynamic parameters varied in the database are
elastic axislocation, e/b, radius of gyration, ry, and massratio, (.. This database was
utilized to identify regions in the parameter space where the divergence mechanism
exhibited aerodynamic lag divergence. Additionally, it served to find regions where the
damping and frequency characteristics were most desirable.

Dimensional design spaces were also constructed. Although not presented here, the
torsional spring stiffness, pitch inertia, mass, semichord and elastic axis location
variations were examined. These variations allowed consideration of many of the issues
associated with model construction and testing. They served to reduce the design space
to ageneral description of the model. Fundamental characteristics of the configuration
chosen were aNACA 0012 airfoil with a chord length of 8 inches, manufactured from
aluminum as athin-walled closed cell with spanwise stiffeners located near the elastic
axis. Trailing edge segments made of different materials serve as the mechanism to
determine and reconfigure the pitch inertia.

Design-specific variations of physical variables were then examined. There were three
physical quantities that were still adjustable within reasonable limits and still produce a
model which could be manufactured: torsional spring stiffness, mass of the trailing edge
segment, and distance from the trailing edge segment to the center of rotation.

Thetorsional spring stiffness could be adjusted. As noted in the non-dimensional
parametric variation, this produced no effect on the migration pattern of the eigenvalues.
Thetorsional spring stiffness was used to control the magnitude of the frequency of the
dynanic mode at the divergence condition. Thisisameasurement and data processing
fidelity issue, not a phenomenon issue. The limitation on increasing the stiffnessis the
tunnel dynamic pressure capability. Increasing the stiffness increases the frequency, but
also the divergence airspeed.

The two remaining design freedoms were simultaneously varied; the results of these
variations are shown in Figure 32 and Figure 33. These figures are very similar in shape
and magnitude to the sample results presented for the non-dimensional parameter
database at afixed mass ratio, Figures 15 and 16. Figure 32 presentsthe ratio of the
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dynamic mode frequency at the divergence condition to the air-off torsional frequency.
The undulating surface is afunction of elastic axis position and ratio of the trailing edge
mass to the total mass of the system. The solid square shown at the ratio of masses value
of 0.01 corresponds to the Plexiglass trailing edge configurations, configurations # 2 and
# 3. The solid symbol at the ratio of masses value of .56 represents the Tungsten trailing
edge configuration, configuration #1. From thisfigure, it is anticipated that the two
designed inertia configurations will produce different dynamic mode migration.
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Figure 32 Physical parameter variation results; ratio of frequency of dynamic mode at divergenceto
pitch mode natural frequency

Figure 33 presents the damping of the dynamic mode at the divergence. Again, the
surface is afunction of elastic axis position and ratio of the trailing edge mass to the total
mass of the system.
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Figure 33 Physical parameter variation results; damping of dynamic mode at divergence
condition

Configuration Descriptions

Three configurations of the model were designed for testing. The configurations differ in
their torsional stiffness and inertial properties. These properties influence the natural or
zero-airspeed structural dynamic frequency. In addition, analyses indicated that the
subcritical migration pattern of the dynamic mode eigenvalue is strongly influenced by
theinertial properties.

Reconfiguring the model’s pitch inertia was accomplished by changing the airfoil trailing
edge. This also changes the non-dimensional mass ratio. Configuration #1 employed the
Tungsten trailing edge component, while the second and third configurations employed

the Plexiglass trailing edge component. These materials were chosen to provide a large
difference in the torsional inertias, and thus an observable difference in the non-critical
mode behavior. Examining Figure 32 and Figure 33, there are solid symbols shown on

the surfaces at the ratio of masses value of .56; these are the expected frequency ratio and
damping for the Tungsten trailing edge configuration, configuration #1. The solid

squares shown in the figures at the ratio of masses value of 0.01 corresponds to the
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Plexiglass trailing edge configurations, configurations# 2 and # 3. Thetwo inertia
designslie on different tiers of the frequency ratio surface. At divergence, the frequency
of the tungsten configuration is expected to drop to 29% from of its air off frequency.
The frequency of the Plexiglass trailing edge configuration is expected to drop to 53% of
the air off frequency when the system destabilizes. Additionaly, the dampings are
different. The analytical frequency ratios and damping at divergence for the three
configurations are given in Table 11. From this data, it is anticipated that models with
the two designed inertias will produce discernibly different dynamic mode migrations.

Config | masSrralingEdge Wy Wp « V (p
# maSSToE | (gir off) Da
1 0.56 21.2 6.2 0.29 0.51
2 0.01 495 26.4 0.53 0.75
3 0.01 87.3 46.4 0.53 0.75

Table 11 Analytical frequency ratios and damping at divergence

Reconfiguring the model stiffness was accomplished by changing the torsional spring and
thus the stiffness. The first two configurations used a 1-inch diameter torsional spring

with an advertised stiffness of 0.94 Ib-in/degree. The third configuration employed a -
inch spring tine with an advertised stiffness of 3.18rkleg. The stiffnesses were
measured and will be discussed in the experimental results section.

Table 12 provides a summary of the configurations. The dimensional quantities and non-
dimensional parameters for each were previously listed in Table 5. Model configuration
#2 serves as a comparison configuration to each of the others and will be discussed in
much more detail than the other two.

Trailing Edge Segment Torsional Spring
Config # Material massrg Diameter Stiffness
MasSropay (Ibr-in/deg)
1 Tungsten 0.56 1” 0.90
2 Plexiglass 0.01 1” 0.90
3 Plexiglass 0.01 Yy 2.78

Table 12 Description of wind tunnel model configurations
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Hardware

Wind Tunnel Model

The divergence assessment testbed (dat) wind tunnel model consists of atypical section
airfoil with aflexible mount system providing a single degree of freedom structural
dynamic mode. The only structural dynamic mode of this model is torsional rotation, or
angle of attack.

Airfoil Description

The airfoil sectionisaNACA 0012 with an 8-inch chord and a span of 21 inches. This
spans the entire test section from the floor to ceiling, as shown in Figure 34. The airfoil
isan aluminum shell, 1/32 inch thick. To ease fabrication and instrumentation it was
made in two sections that join at approximately the mid-span. The interna structure has
two spar webs running the entire span to provide bending rigidity and the designed
inertial properties. Each of the two span sections consists of internal spars and airfail
which were cut as a single entity from a solid block of aluminum using awire electro-
deposit-machine (EDM). The last 1.125 inches of the airfoil were fabricated separately to
provide test configurations with different inertial properties. To effect alarge changein
inertia, trailing edge segments were fabricated from Plexiglass and from Tungsten. These
trailing edges could be easily changed during the test.
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Figure 34 Resear cher installing wind tunnel model; airfoil shown with Plexiglasstrailing edge
segment

Mount System

The mounting system for the dat model has a ceiling mechanism and a floor mechanism.
Both portions of the mount system are required for mounting the model and holding it in
place.

The ceiling mechanism, shown in Figure 35, serves three functions in addition to holding
the model in place. Thetorsional spring is contained in the celling mechanism.
Sometimes called abarrel spring or a Bendix flexure, the spring provides the stiffness
associated with the structural dynamic torsion mode. The ceiling mount also contains a
turntable which allows the rigid angle of attack to be set and changed. Mounted between
the turntable and the torsional spring is a balance which measures torsional strain.

Figure 35 Ceiling mechanism of mount system
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This mount system was designed and built with couples to connect the torsional spring to
the balance and to the airfoil. Three sets of couplers were fabricated so that springs of
various sizes could be easily substituted. This system flexibility allows configuration
changes in stiffness during the test.

The floor mount system serves two functions in addition to holding the model in place.
The floor mount mechanism is shown from below, looking up at the airfoil and ceiling
mount system, Figure 36.

Figure 36 Floor mount mechanism, viewed from below

A shaft extends out of the wing through the tunnel floor and is fixed to an angular
displacement transducer. This allows the total angle of attack of the wing to be measured
including the rigid angle of attack set using the ceiling mount and the elastic increment.
Additionally, the sensor wing and pressure reference tubes pass out of the tunnel through
this mount system.

Torsional stiffness testing of springs

The torsional springs were tested to determine their stiffness constants, as well as
evaluate the range of operation and linearity. The springs were inserted into atest fixture
which measured the torsional moment and the deflection angle. Weight was applied to
the test fixture in a manner which caused one end of the spring to rotate through a
deflection angle. The applied weight was increased and data acquired at each weighting
until the deflection angle stayed constant. The data set was fit with alinear equation that
minimized the error in the least squares sense. The torsiona spring stiffness constant is
the slope of torsional moment versus deflection angle.

The data for the 1-inch diameter spring is shown in Figure 37, along with alinear fit to

the data and the manufacturer’s specifications. Several data sets were acquired for each
spring. Each data set was curve fit with and without constraining the y-intercept. Curve
fits to the data sets produced spring constants between .87 and-inG@:lirees. After
consideration of pluck test results and inertia measurements, the value to be used in
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comparison analyses was set as 0.90 Ibx-in/degree. The manufacturer’s specification for
this spring, 0.94 lkin/degree, falls within the scatter of the measurements and curve fits.
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Figure 37 Stiffnessdata for 1 inch diameter torsional spring

The data for the % -inch diameter spring is shown in Figure 38, along with a linear fit to
the data and the manufacturer’s specifications. Curve fits to the data sets produced spring
constants between 2.6 and 2.8iflddegrees. The nominal value for performing

comparison analyses was set as 2.#8ldegree. The manufacturer’s specification for

this spring, 3.18 lkin/degree, is significantly higher than the measured value. This
difference invalidated preliminary estimates of the divergence dynamic pressure.

However, the qualitative behavior of the eigenvalues were shown in the analysis to be
iInvariant with respect to torsional stiffness.

Based on the measured data, both springs appear to behave in a linear manner for angular
displacements below 18 degrees.
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Figure 38 Stiffness data for % inch diameter torsional spring

Model Instrumentation

14

16

18

20

The wind tunnel model was instrumented with the following sensors. A Trans-tek
angular displacement transducer was mounted to the bottom shaft of the airfoil. The

measurement was made such that the total angle of attack was measured, including the
prescribed rigid contribution. A torsional moment sensor connected the angle of attack
turntable to the torsional spring coupler. This sensor served the role traditionally played
by abalance. A piezoresistive accelerometer was mounted inside the airfoil towards the
leading edge. Thistype of accelerometer is dc-coupled, providing static values, as well

as dynamic frequency responses. Unsteady pressure transducers were mounted at the
approximate midspan of the airfoil section. One transducer was on the leading edge.

Eight others comprise pairs of top- and bottom- mounted pairs. These eight transducers

were mounted at the 5%, 15%, 30% and 52% chord locations, respectively.

This test was conducted in the wind tunnel facility at Duke University. Two gust vanes

Facility Description

wereinstalled vertically in the tunnel, ahead of the model. Each gust vane system
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consists of afixed airfoil and adlotted cylinder. The slotted cylinders were placed just aft
of the gust vane airfoils. Each cylinder was mounted to a shaft. The shaft was held by
rotating bearings in the ceiling and floor. Beneath the wind tunnel floor, the shafts were
connected by a gear and belt system to amotor. Viathis motor, the cylinders were
rotated. Voltage supplied to the motor governs the motor speed and thus the rotational
frequency of the slotted cylinder. Through this mechanism, aerodynamic forcing of the
test article was achieved.

Data Acquisition System

The data was acquired using a portable, self-contained system. The signals were input to
signal conditioners, the type of which depends on the sensor. The signal conditioners
sent voltages to a National Instruments DAQ 700 card which was inserted into the game
card slot of alaptop computer.

The DAQCard-700 isa Type Il PCMCIA card with 12-bit analog to digital conversion.*
It can acquire data from 16 single-ended analog input channels with a maximum sample
rate of the card is 100 kilosamples per second. The card has DC input coupling, enabling
static measurements. A FIFO buffer contains the data during multiple analog to digital
conversionsto prevent dataloss. An onboard counter/timer generates the sample interval
clock. For this study, multichannel acquisition with continuous scanning was the mode
of operation, taking one reading per sample interval, always in the same channel order,
starting with the highest channel number.

The data acquisition system was driven by virtual instruments designed in Labview, a
National Instruments software interface to their data acquisition products.

Experimental Data Acquired

Wind tunnel test data was acquired to investigate experimentally system behavior and
validate analytical results. Specifically, data was acquired: 1) to find the divergence
dynamic pressure; 2) to examine the modal characteristics of non-critical modes, both
subcritically and at the divergence condition; 3) to examine the eigenvector behavior. A
secondary goal of acquiring and analyzing this data was to evaluate standard
experimental divergence onset prediction methods. Addressing these goals required that
several different experimental methods be employed for acquiring data.

! DAQCard-700 User's Manual: Multifunction 1/0 Board for the PCMCIA BUS
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The first type of data acquired was system response to turbulence occurring naturally in
thetunnel. Initial divergence testing was performed by increasing the dynamic pressure
or velocity of the airstream. Stability or instability of the system was observed; data was
acquired. The majority of the turbulence-excited data was acquired at fixed wind tunnel
velocity. These data are referred to in thistext as velocity stabilized points.

Forced response data was also acquired. One method employed to excite the system was
applying a pluck or arap to the mount system, as shown in Figure 39. A portion of the
mount system accessible from outside the tunnel was connected to the moving portion of
the torsional spring. Applying aforce to the bottom coupler was equivalent to rapping
the airfoil. Datawas acquired as the model was plucked or rapped; the model response
was recorded as the motion decayed, or grew in the case of unstable systems.

Figure 39 Administering a pluck to the model

The second method of forcing the system was to employ the gust vanes, which were
described previously. While the pluck test method utilizes the structure to apply the
forcing function, the gust method acts through aerodynamic forces. Two types of gust
excitations were used to acquire data. The first type of excitation used was a sweep of
the frequency range of interest, starting at the high frequency end and progressing to low
frequency. The second type of excitation provided by the gust vanes was rotation of the
cylinder at afixed frequency, dwelling at asingle frequency. The latter method is
referred to in this text as the sine dwell method of excitation.

Data Processing

The measured data was utilized to glean insights into the system behavior. Examining
different system characteristics required that the data be processed in several ways.

Identifying the divergence condition was accomplished by observing the system stability
as the dynamic pressure was increased. Additionally, the divergence onset was predicted
using several methods which are classically employed in experiments. Becauseitisa
contention of thiswork that the dynamic mode persists at a nonzero frequency as the
instability is reached, it isinteresting to contrast the results obtained from static and
dynamic prediction techniques. The static methods used were load monitoring, angle of
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attack ratio monitoring, and the Southwell method. The dynamic methods employed
were frequency tracking and inverse amplitude tracking.

Identifying modal characteristics was accomplished by scrutinizing the time history data.
Freguency domain analyses and the logarithmic decrement technique of determining
damping were utilized. The frequency domain analyses include analyzing the Fourier
transformations, the power spectral density functions and approximated transfer
functions.

Experimental Results

Configuration #2

The experimental data for wind tunnel model configuration # 2 is presented first.
Configuration # 2 has the 1-inch diameter torsional spring and has the Plexiglass trailing
edge. Thisconfiguration has lower torsional inertia than the Tungsten configuration,

model configuration #1, but has the same torsional stiffness. This configuration has

lower torsional stiffness than the %4 inch spring configuration, model configuration # 3,
but has the same torsional inertia. Thus this configuration serves as a comparison
configuration to each of the others. Results will be presented and discussed in the
following order: determination of the divergence condition, subcritical techniques for
predicting divergence onset, system behavior at divergence, and subcritical modal
characteristics.

Diver gence dynamic pressure

Divergence testing was conducted by setting the zero airspeed angle ofcattadkch

is referred to as the rigid angle of attack, as close to zero as possible. The divergence
dynamic pressure was determined by increasing the velocity and recording data as the
system became unstable. A time history showing the divergence of this configuration is
shown in Figure 40. The dynamic pressure was being slowly increased until the angle of
attack increased dramatically and suddenly. This was declared as the divergence
dynamic pressure, 5.1 psf (244 NJmThe time history shows that the model oscillates
about a new angle of attack position, which is not at the hard stop of the spring. It is
speculated that the airfoil has reached an angle of attack where flow has separated and
stall has occurred. This issue and the ensuing behavior of the system are further
discussed at the end of this section on experimental results.
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Figure 40 Diver gence of wind tunnel model configuration #2

Divergence prediction using subcritical data

Five methods of experimentally predicting divergence onset were utilized in this work.
Three methods which examine the static properties and two dynamic response methods of
analyzing data were applied.

Static load monitoring is a fundamental method of predicting divergence. This method
depends on the monitored load becoming large as divergence is approached. The slope
of the moment versus dynamic pressure curve is the key parameter. This slope changes
dramatically in the neighborhood of divergence. In thisexperiment, the torsional spring
moment is the monitored load. In applying this method, data sets are acquired at severa
rigid angles of attack. For each rigid angle of attack, data was recorded at regular
intervals of dynamic pressure. Datafor each angle istreated as adata set. The datais
shown in Figure 42. The legend indicates the rigid angle of attack for each of the traces
in the figure.
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Two data sets were acquired for rigid angles of attack very near zero degrees as shown in
Figure 41. For these data sets, the torsional moment is very small until just before the
divergence condition is reached; the load is seen to increase dramatically at this point.
The steep slope indicates that divergence isimminent.

Datais also presented for non-zero rigid angles of attack. The terminations points of
these curves show the last dynamic pressure before the system became unstable for each
rigid angle of attack. A method for estimating these destabilizing dynamic pressures will
be presented in the discussion section. The increase in load with changing dynamic
pressure is more gradual for larger ap. The structural moment is directly proportional to
the elastic increment in the angle of attack. Examination of the static equilibriun
equations for this system shows that the elastic increment is an amplification of o.
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Figure 41 Strain monitoring for predicting divergence onset

The second method of predicting the onset of divergence is examining the angle of attack
as the dynamic pressureisincreased. Divergenceis classically defined by the angle of
attack becoming infinitely large, or the inverse of the angle becoming zero. Figure 42
shows the inverse angles of attack data. The data has been normalized by therigid angle;
this normalization collapses the datato asingle line.
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Figure 42 Predicting diver gence using angle of attack ratio

A linear fit through the experimental data produces a divergence dynamic pressure of 5
psf. Thetheoretical curve, which employs the measured value of torsional stiffness
produces a divergence dynamic pressure of 4.6 psf. The experimental prediction using
this method is 9% higher than the theoretical result. The disagreement between analysis
and experiment is resolved by utilizing a measured value of lift coefficient instead of the
ideal of 2. Using C 4 = 5.7 l/radians produces a divergence dynamic pressure of 5.08
psf.

The two static methods used previously are combined in the Southwell method. To apply
the method, the static load is measured at fixed dynamic pressures for various rigid
angles of attack. The data at each dynamic pressure constitutes asingle data set. A linear
fit is made to each data set, plotting static moment versus angle of attack. The datais
shown in this manner in Figure 43. The slope of each lineis denoted, A. Divergence
occurs at the dynamic pressure which makes the slope of these data infinite.
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Figure 43 Intermediate Southwell plot

The data sets are combined into asingle plot. The slope, A, is plotted versus itself,
normalized by the dynamic pressure. The slope of this line predicts the divergence
dynamic pressure. Figure 44 shows the data for this configuration, with a slope of 5.5
psf.
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Figure 44 Southwell method for predicting divergence onset

During a divergence onset test, the Southwell method is applied as the dynamic pressure
dataisacquired. Figure 45 shows the prediction of the Southwell method as additional
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datais considered in the linear fit. Using only data below 2.1 psf, the divergence
prediction of 5.2 isfairly close to the final divergence prediction which utilized data up to
5.2 psf.

Predicted divergence dynamic
pressure (psf)

O P N W M O O N
A

0 2 4 6 8

Maximum dynamic pressure used in Southwell method
Figure 45 Southwell method results using increasing amounts of data

Dynamic methods were also applied to predict divergence. Divergenceisclassically
considered to occur as the torsional mode frequency drops to zero and then statically
destabilizes. One classical method of predicting the onset of divergence isto monitor the
torsional mode frequency migration, anticipating that it will go to zero prior to
divergence. Figure 46 shows the system frequency extracted from subcritical data as the
dynamic pressureisvaried. The Fourier transformation of the angle of attack response
was computed for data generated when frequency sweeps were input to the gust vanes.
At divergence, the frequency is still greater than 3 Hz for this configuration.
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Figure 46 Frequency tracking to predict divergence

A second method that relies on the same data and analytical techniques as the frequency
tracking method. The amplitude of the system response is anticipated to become large as
divergenceis encountered. Rather than utilizing the static response as was done
previously in the load monitoring method, the amplitude of the modal responseis
tracked. Figure 47 showsthisdata. The amplitude is actually seen to decrease until the

last data point before divergence.

Figure 47 Inverse amplitude of the power spectral density of the angle of attack response
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Extracting modal characteristics

One of the primary concerns of this study is tracking the modal characteristics of the
aeroelastic system as the dynamic pressure increases towards the divergence condition.
Identification of the torsional mode frequency and damping was accomplished by
employing different excitation, measurement and data processing techniques.

The structural damping of the system without any aerodynamic forces acting can be
determined by considering the decay of the response due to arap or apluck. A pluck was
applied to the model, as shown in Figure 39 and the logarithmic decrement method was
used to analyze the data.

The logarithmic decrement is a well-documented method for cal culating the damping of a
system®. Applying the method is dependent upon having atime history of a decaying
response where several cycles of the decaying motion are evident. Air off pluck test data
isshown in Figure 48. Thetime history shows the angle of attack displacement as a
pluck is administered to the model and the motion decays. The circular symbols indicate
the values which were used in the damping calculation.
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Figure 48 Extracting logarithmic decrement data from angle of attack time history, air off data for
configuration # 2

The logarithmic decrement, d, is calculated using Equation 20 which then produces a
damping value from Equation 21. The amplitudes of the 0™ and N™ cycles are denoted

2 Clough, Ray W., and Joseph Penzien, Dynamics of Structures,
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by ain thisequation. Thereal part of an eigenvalue can be calculated from the damping
and the frequency, as shown in Equation 22.

Iog%'\I E
5= cly) Equation 20

N cycles

(= %/m Equation 21

Re:——sin(i)a

m Equation 22

Data was acquired and analyzed in this manner for subcritical dynamic pressures. Figure
49 presents the results of numerous applications of the logarithmic decrement method.
The damping and frequency information were converted to real and imaginary
components representative of asingle mode. Therea part is plotted as afunction of the
dynamic pressure. Results from individual time histories are shown as small open
circles. Thelarger solid circles are the average results at each dynamic pressure. While
the damping is well defined and repeatable at low dynamic pressures, the uncertainty at
the higher dynamic pressures becomes quite significant.

82



Real Part
o))

-10

-12

0 2 4 6
Dynamic Pressure (psf)

Figure 49 Logarithmic decrement results; large symbols are average values for each
dynamic pressure

Frequency domain analysisis an important tool in identifying the modal characteristics of
asystem. By performing a Fourier transformation on a set of data, dominant frequencies
of the system become evident. Damping can also be gleaned from data examined in this
manner. The frequency of the system is determined by the maximum amplitude.
Extracting the damping requires that one find the amplitude of the peak and then the

frequencies where the amplitude is reduced by afactor of V2, these frequencies are
referred to as the half power points. Figure 50 illustrates the quantities required to
perform these calculations. This method was applied when data across the frequency
range of concern could be obtained in asingle time history, asin the case of the
frequency sweep excitations.
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Figure 50 Frequency domain representations for extracting modal parameter data

Figure 51 shows the Fourier transformation of the angle of attack data acquired at 1.52
psf for configuration # 2. This data was produced by exciting the system with a
frequency sweep signal to the gust vanes. From this plot, the maximum amplitude was
found to be 766 at afrequency of 7.3 (45.6 rads/sec). The half power points were found
tobe 6.75Hz and 7.6 Hz. The difference between these frequencies, denoted Aw, is 0.85
Hz. The damping is calculated using Equation 23, resulting in avaue of { = 0.059, or an
eigenvalue with real part —2.67 .

Z:A_a'

Equation 23
2a

This half power method was also utilized in real-time. A sine dwell excitation was sent

to the gust vanes. The frequency of the excitation was tuned until the center frequency
was determined. The amplitude was recorded and the half amplitude was determined.
The frequency was then retuned to determine the half power points. In addition to
recording these important values, time histories were recorded as the model was excited
at each of these three frequencies. When these time histories were processed, they were
found to be slightly inconsistent with the real-time determination of the half power

points. The recorded and processed data was utilized in the final computations pertinent
to the real-time half power method.



A variation of the Fourier transformation method uses the power spectral density
function, PSD. The PSD isthe normalized square of the Fourier transformation. The
normalization allows frequency data extracted from different time length and sample rate
datato be compared. Because the PSD is essentially the squared frequency content, the
half power points are assessed at the peak amplitude/2. The right side of Figure 50
illustrates the required quantities to apply this technique. Itisidentical in calculation to
the Fourier transform method.

This method was applied for velocities in the vicinity of divergence. Very near the
dynamic pressure at which the system destabilized, sine dwell excitations had to be used
to impart enough energy to the dynamic mode. Analysis of each time history produced a
single point on afrequency domain plot.
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Figure 51 Amplitude of Fourier transformation of angle of attack; Configuration # 2,
dynamic pressure 1.52 psf

The transfer function is another frequency domain interpretation which can be utilized to
extract modal information. A transfer function requires an input, or excitation, signal in
addition to the response signal. The actual excitation, the pressure field induced by the
gust vanes on the wing is not available. The dynamic pressure of the tunnel, however,
can be utilized in some sense as the excitation. Ewins® suggests plotting the real part of
the transfer function as a function of frequency. Thisisdone using sine dwell datato
produce each point.

® Ewins, D. J., Modal Testing: Theory and Practice
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The objective of the logarithmic decrement analysis and the frequency domain analyses
were to determine the subcritical modal characteristics of the system as the dynamic
pressure was increased towards divergence. The results of these techniques, applied to
configuration #2, are summarized in Figures 52, 53 and 54. The damping and frequency
information have been converted to the real and imaginary parts of an eigenvalue
assuming that they were representative of a single mode.

Figure 52 shows the real part as afunction of dynamic pressure for the different methods.
Thisisindicative of the damping of the system. Seven sets of data are shown in the
figure. All data setsindicate that the damping of the system is mainly due to the
aerodynamics. The structural damping, indicated near zero airspeed is very small by
comparison. All methods show the modal damping increasing as the dynamic pressure
increases until divergence isreached. Theindividual curves are discussed below.
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Figure 52 Real part of measured modal data as functions of dynamic pressure,
Configuration # 2

The frequency sweep data was processed using the Fourier transform method. Because

the frequency sweeps did not impart enough modal energy to the model near divergence,

the results are only shown for dynamic pressures below 4.1 psf. These subcritical results

show a monotonic increase in the magnitude of the real part as dynamic pressure

increases. The data labeled as “maximum damping” corresponds to using the outside
edges of the modal peak to determine the half power frequencies. The data labeled “best
guess” corresponds to faring a curve through the scatter of the frequency data. The line
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faring is approximately equivalent to processing a shorter time segment, which increases

the Fourier transform frequency spacing. The “best guess” produced lowest values of
damping across the dynamic pressure range. These values, which were more subjectively
determined than the maximum damping values, produced more variability in the results.
The “maximum damping” interpretation of the frequency sweep data lies nearly on top of
the logarithmic decrement results.

The logarithmic decrement results, shown in the figure by open squares, are the average
values at each dynamic pressure, which were shown in Figure 49. The logarithmic
decrement results are the only results available for the air off condition. The results show
very low structural damping; for this configuration it was measuréd=a8.0053.

Translated into the real part of an eigenvalue whose frequency is 49.5 radians/second,
this corresponds to a real part of —-0.26. A very orderly march to higher damping is
charted by this data, which is available only at dynamic pressures below 3.6 psf.

The largest damping values were obtained by the real-time half power method. This data
was taken up to 4.6 psf and provides a very smooth trend in the damping values.

In the vicinity of divergence, the sine dwell data was analyzed using the frequency

domain methods. These analyses provide interesting trends. The Fourier transform
results, shown by open triangles connected by a solid line, begin near where the

frequency sweep data ended. The data continue to decrease until a dynamic pressure of 5
psf is exceeded. The values decrease as dynamic pressure is further increased. The
power spectral density method and the transfer function method yield similar trends.

The frequency of the dynamic mode is shown in Figure 53. All methods show the same
trend. The structural dynamic frequency, determined from time histories is 49.5
radians/second, (7.9 Hz). The frequency decreases as the dynamic pressure and thus the
aerodynamic coupling increase. All results lie on top of each other except for the

analyses of the sine dwell data. These data were acquired near divergence and have some
scatter in the results. Regardless of the method, however, the frequency of the dynamic
mode is determined to be not lower than 20 radians/second (3.2 Hz) at the divergence
condition. The dynamic mode is clearly shown to persist at a non-zero frequency at the
divergence condition.
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Figure 53 Imaginary part of measured modal data as functions of dynamic pressure,
Configuration # 2

The subcritical modal datais also presented in aroot locus format, Figure 54. The sine
dwell results have been removed from this chart for purposes of clarity. The four traces
shown, which are not individually identified, correspond to the pluck test results analyzed
using the logarithmic decrement technique, the real-time half power results and the two
interpretations of the frequency sweep data analyzed with the Fourier transform. All of
the traces begin in the neighborhood of the air-off value at —0.26 + j49.5 and migrate
generally downward and to the left as dynamic pressure increases.
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Configuration #1

The experimental data for wind tunnel model configuration # 1 is now presented.
Configuration # 1 has the 1-inch diameter torsional spring and has the Tungsten trailing
edge. The Tungsten trailing edge produces a higher torsional inertia than for the other
configurations.

Divergence testing was conducted exactly as for configuration #2. The zero airspeed
angle of attack was set as close to zero as possible. The divergence dynamic pressure
was increased slowly until the angle of attack increased dramatically and suddenly, as
shown in the time history of Figure 55. Thiswas declared as the divergence dynamic
pressure, 5.14 psf (246 N/m?), which is nearly identical to the divergence condition for
configuration #2. Based on analysis, this was the anticipated result.

10

9

Angle of Attack (degrees)
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0 2 4 6 8 10 12 14 16 18 20
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Figure 55 Divergence of wind tunnel model configuration #1

The subcritical methods of predicting divergence onset were each applied for this
configuration. The dataare similar to that presented for configuration #2 and are omitted
here. The Southwell method was shown to be the most reliable prediction techniquein
analyzing the data for configuration #2. For configuration #1, a divergence condition of
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5.1 psf was determined. This prediction required that data be known up to 3.13 psf, or
61% of the predicted divergence dynamic pressure. Using data at a higher dynamic
pressure was found to detract from the accuracy of the prediction, as nonlinear effects
began to influence the data.

The subcritical modal characteristics of this configuration were determined, as for the
previous configuration, as the dynamic pressure was increased towards divergence. The
results of these techniques, applied to configuration #1, are summarized in Figures 56, 57
and 58. The damping and frequency information have been converted to the real and
Imaginary assuming that they were representative of a single mode. Only two methods
were used to acquire and analyze the data for this configuration: the logarithmic
decrement technique and the half power method applied to frequency sweeps.

Figure 56 shows the real part as afunction of dynamic pressure. Aswith configuration
#2, dl data sets indicate that the damping of the system is mainly due to the
aerodynamics. The logarithmic decrement results are shown in the figures by open
squares. Theair off results show very low structural damping; for this configuration it
was measured as = 0.0046, avery low value by comparison. The half power method
results are shown in the figures by solid diamonds. Both methods show the modal
damping increasing as the dynamic pressure increases for subcritical conditions below 4
psf. The measured damping tends towards zero near the divergence dynamic pressure.
Thisissueis further addressed in the discussion section of this paper.
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Figure 56 Real part of measured eigenvalues, Configuration # 1

The frequency of the dynamic modeis shown in Figure 57. The structural dynamic
frequency of the air off pitch mode was determined as 21.2 radians/second, (3.4 Hz). The
logarithmic decrement and half power method show the same trends for increasing
airspeed . The frequency decreases as the dynamic pressure and thus the aerodynamic
coupling increase. The frequency of the dynamic mode is determined to be not lower
than 7 radians/second (1.25 Hz) at the divergence condition. The dynamic modeis
clearly shown to persist at a non-zero frequency at the divergence condition.
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Figure 57 Imaginary part of measured eigenvalues, Configuration # 1

The subcritical modal datais also presented in aroot locus format, Figure 58. The traces

shown correspond to the pluck test results analyzed using the logarithmic decrement

technique and the frequency sweep data analyzed with the Fourier transform. All of the

traces begin in the neighborhood of the air-off value at —0.1 + j21.2 and migrate generally
downward and to the left as dynamic pressure increases. Near divergence, they resemble
a left-to-right scribbling due to the uncertainty in determining the damping value.
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Figure 58 Root locus using experimental data, Configuration # 1

Configuration #3

The experimental data for wind tunnel model configuration # 3 is presented next.

Configuration # 3 has the % -inch diameter torsional spring and has the Plexiglass trailing
edge. The inertial characteristics are identical to configuration #2. The torsional stiffness
has been changed. As previously mentioned, changing the torsional stiffness is not
anticipated to affect the dynamic characteristics of the system; in the anlaysis, the
eigenvalue migration pattern remains identical. Although the nondimensional root locus
remains the same, the dimensional natural frequency of the pitch mode increases as does
the dynamic pressure which produces divergence.

Divergence testing was conducted exactly as for configuration #2. The zero airspeed
angle of attack was set as close to zero as possible. The divergence dynamic pressure
was increased slowly until the angle of attack increased dramatically and suddenly, as
shown by the angle of attack time history, Figure 59. This was declared as the
divergence dynamic pressure, 15.2 psf (7309N/m
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Figure 59 Diver gence of wind tunnel model configuration #3

The subcritical methods of predicting divergence onset were each applied for this
configuration. For this configuration, the Southwell method predicted a divergence
condition of 15.8 psf. Although the prediction isfairly close to the divergence dynamic
pressure observed directly, the nonlinear effects influenced this data more significantly
than the previous configurations. The linear approximation to the data, utilized in the
Southwell method, did not fit the datawell. Asthe range of dynamic pressures included
in the data set analyzed increased, the predicted divergence dynamic pressure also
increased.

The subcritical modal characteristics of this configuration were determined, as for the
previous configurations, as the dynamic pressure was increased towards divergence. The
results of these techniques, applied to configuration #3, are summarized in Figures 60, 61
and 62. The damping and frequency information have been converted to the real and
imaginary assuming that they were representative of a single mode. The damping and
frequency traces presented are computed using the methods described pertaining to
configuration #2.

Figure 60 shows the real part as afunction of dynamic pressure. Aswith configuration
#2, dl data sets indicate that the damping of the system is mainly due to the
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aerodynamics. The logarithmic decrement results are shown in the figures by open
squares. Theair off results show very low structural damping; for this configuration it
was measured as { = 0.0035. Results from the other various methods are shown by the
symbolsindicated in the legends. All methods show the modal damping increasing as the
dynamic pressure increases. Additionally, the data show that the dynamic mode is stable
throughout the range of dynamic pressure, including at the divergence condition.
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Figure 60 Real part of measured eigenvalues, Configuration # 3

The measured frequency of the dynamic mode is shown in Figure 61. The structural
dynamic frequency of the air off pitch mode was determined as 87.15 radians/second,
(13.9 Hz). All methods show the same trends for increasing airspeed. The frequency
decreases as the dynamic pressure and thus the aerodynamic coupling increase. At
divergence, the frequency of the dynamic mode is determined to be not lower than 36
radians/second (5.8 Hz) at the divergence condition. The dynamic mode s clearly shown
to persist at a non-zero frequency at the divergence condition.
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The subcritical modal datais also presented in aroot locus format, Figure 62. All of the
traces begin in the neighborhood of the air-off pitch mode eigenvalue, —0.3 + j87.1, and
migrate generally downward and to the left as dynamic pressure increases. The trend
shown in this figure is for the dynamic mode damping to increase dramatically in the
neighborhood of the divergence dynamic pressure.

Hard Limit Instabilities

Time histories of each configuration at their respective divergence dynamic pressures
have been presented, Figures 40, 55, and 59. Each figure shows that divergence resulted
in the model sitting at an angle of attack where the airfoil has stalled. Data was acquired
for velocities beyond these divergence conditions until further destabilization resulted in
the model hitting the hard stops of the torsional spring. An example of this is shown for
configuration #2 in Figure 63; the angle of attack time histories is presented. Beginning
at 15.8 seconds into the time history, the character of the motion changes dramatically.
Destabilization, characterized by the onset of this dramatic motion, occurred at a dynamic
pressure of 5.59 psf (268 N9n
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Figure 63 Hard limit instability encountered as dynamic pressure is increased,
(Configuration #2)

A second example is shown in Figure 64; this data was acquired while the tunnel
condition is held constant at 5.53 psf. This data shown in both time histories indicates
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that the system destabilizes in a static sense, while dynamic motion persists.
Examination of the data using an expanded scale, Figure 65, shows the dynamic
oscillations of the torsional motion at 4.9 Hz as the system becomes statically unstable.
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Figure 64 Divergence encountered while at constant dynamic pressure
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Figure 65 Divergence encountered while at constant dynamic pressure, expanded scale
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The time histories presented above appear to have different character, despite the same
configuration being at approximately the same condition. The system behavior hasto be
examined in the light of nonlinearities and regions of aerodynamic and structural loading

and unloading. Figure 66 addresses thisissue. Shown in the figure are regions where

structural and aerodynamic nonlinearities affect the system. The torsional springs have

been shown to have limits on the linear behavior at approximately 18°. This deflection

limit is relative to the neutral position of the spring. Because the rigid angle of attack was
set by rotating both ends of the barrel spring, the neutral position is equivalent to the rigid
angle of attackqo. All structural loading or unloading is relative to the neutral position

of the spring. The system also appears to be subject to an aerodynamic nonlinearity as
the flow separates and stall is encountered. Stall initiates at an angle substantially below
the structural limit; effects were observed as low as 8°. The stalled airfoil stabilizes at
angles as high as 11 ¥2°. Aerodynamic loading or unloading is relative to the symmetric
position of the wing, 0°. These regions determine and explain the behavior of the system
observed in the time histories.

18° +q, AN A R R e S AN
Stalled airfoil
Oy [ = = -
Structural Aerod .
Loading erodynamic Range
[0 P S o Loading
Angle 0 Of
of 0° Linear
Attack v Structural Aerodynamic System
Loading Loading Motion
_aga” — s — e —— e —— e — —
Stalled airfoil
-18°+ ) .
Nonlinear stiffening spring (hard limit at -20°)

Figure 66 Regions of behavior for the airfoil

Consider the time history shown in Figure 55. Prior to the destabilization, shown to

begin at 15.7 seconds, the linear system has aready diverged. Because the airfoil is

sitting at approximately 11 %2°, aerodynamic stall has effectively decreased the lift curve
slope; in a simplistic static sense, this can be thought of as a decrease in (negative)
aerodynamic stiffness. A decrease in negative aerodynamic stiffness is raises the
dynamic pressure at which the system destabilizes. Thus the nonlinear system appears
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stable at a dynamic pressure which exceeds the linear system divergence condition. At
15.7 seconds, the system possesses enough aerodynamic energy such that the nonlinear
system becomes unstable. Because the airfoil is stalled only asit oscillatesin one
direction (in this case, toward larger angles), the motion is forced towards zero. Asthe
system destabilizes, the airfoil reenters the linear aerodynamic range. The airfoil has
enough momentum to approach zero, which is the aerodynamically and structurally
unloaded position, since the airfoil is at zero degreesrigid angle of attack. The systemis
nowat an unstable equilibrium point. Pursuant motion may be to either the positive or the
negative side. In the case of Figure 55, the linear range system divergesin the same
direction that it just came from. In the case of Figure 64, the system divergesin the
opposite direction. In the second case, the system may have been at a higher energy
level, the system possessing more momentum as it unloaded, overshooting the neutral
stability point and encouraging divergence in the opposite direction. In both of these
cases, when the system hits the nonlinear region again, sufficient energy has been added
to the system so that the hard stops of the torsional spring are hit; oscillations from one
stop to the other ensue.

Similar datais presented pertinent to configuration # 1. For this configuration, the onset
of the instability is gentler than that observed for configuration #2. Additionally, the
system does not hit the hard stops of the spring until after severa oscillations from one
nonlinear range to the other.
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Figure 67 Nonlinear system divergence for configuration 1 at constant dynamic pressure

Results for configuration #3 are shown in Figure 68. This are particularly interesting data
because the nonlinear system is barely unstable and appears to damp dlightly instead of

gaining energy with each oscillation. Prior to 15 seconds, the airfoil is sitting at 11%2°
angle of attack. The dynamic mode oscillations grow in amplitude, pushing the airfoll
deeper into the stall region. At 15.75 seconds, the system destabilizes in a static sense.
The angle of attack changes monotonically until the nonlinear aerodynamic region on the
negative side is encountered. The nonlinear system diverges again to the positive side
and then returns again to the negative side. Unlike in the previous cases, the system does
not have enough momentum to oscillate to the hard stops of the spring. Instead, the
motion damps slightly. By the second time the system hits the negative side, the
momentum is no longer sufficient to propel the airfoil through zero. As in the first case
discussed, it is now equally likely to diverge to either the positive or the negative side.
Returning to the negative side, the airfoil settles again at the stalled angle of 11%2°.
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Figure 68 Nonlinear system divergence for configuration 3, tab 976, asvelocity is slowly increased
until diver gence condition

Dynamic mode char acteristics at theinstability condition

The time history data presented previously pertained to the system when therigid angle
of attack was very close to zero degrees. The characteristics of the system at the
instability condition appear different when the airfoil is set at a substantial nonzero rigid
angle of attack. Datais presented in Figure 69 as the configuration #2 destabilizes at
three different rigid angles of attack.
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Figure 69 Instability encountered for several values of rigid angle of attack,
Configuration #2

The oscillatory behavior appears in the data more prominantly for the non-zero rigid

body angles of attack, 5° and 6° versus 0°. It is important to note that setting the rigid
angle of attack at a non-zero angle causes the system to diverge at a lower dynamic
pressure. Each of the lines plotted in Figure 69 is for a different dynamic pressure. The
data at 5° angle of attack was acquired at a dynamic pressure of 3.13 psf. The modal
frequency is measured as 6.0 Hz. For the same dynamic pressure, the dynamic mode
frequency of the system at 0° was measured between 5.7 and 6.1 Hz, depending upon the
data reduction technique. The frequency of the system at instability for the 6° rigid

angle of attack is 6.2 Hz. The dynamic pressure is 2.55 psf. At a dynamic pressure of
2.55 psf, the 0° rigid angle of attack data yielded a frequency between 6.3 and 6.5 Hz.

The nonzero angle of attack data must be considered in light of the nonlinear regions
discussed above. There is additional complexity in the system because the structure’s
equilibrium point is different than the aerodynamic stall equilibrium point. Consider the
above data for a rigid angle of attack of 5°. The unstable behavior initiates at
approximately 0.5 seconds as the dynamic mode oscillations grow in magnitude. As time
progresses, the oscillations are shown to cross the zero angle of attack, without moving
into the nonlinear effects on the negative side, and then returning to the positive stalled
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side. Thisbehavior exists due to the disparity in the structural and aerodynamic neutral

stability points. As the airfoil oscillates towards 5°, the system is unloading structurally
and aerodynamically. Once it passes 5°, it is becoming structurally loaded such that the
torsional spring force acts to pull it back towards 5°. The aerodynamic forces are still
dissipating until the system oscillates beyond 0°. This data set was acquired substantially
below the instability dynamic pressure of the system at 0° rigid angle of attack. The
structural restorative moment capability exceeds the aerodynamic moment imparted at
the low angles of attack. The system is therefore pulled towards the structural

equilibrium point, 5°. The system oscillates back to the stall angle of attack as a larger
aerodynamic moment is produced by the airfoil at a now larger angle of attack.

Similar data is presented for configuration #1 and # 3 in Figure 71 and Figure 70,
respectively.
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Figure 70 Instability encountered for several values of rigid angle of attack, each at a different
dynamic pressure, Configuration #1
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Figure 71 Instability encountered for several values of rigid angle of attack, each at a different

dynamic pressure, Configuration #3

Frequency ratios for the wind tunnel model configurations are compared in Table 13.

Confi g Wy p 7 V WH [ |_/ MasStyailingEdge
# Wy Wy MasST o)
(ar (at hard
off) instability
condition)
(fp, H2) (fp, H2)
(fo, H2)
21.4 89 15.7
1 Ga | (142 0.42 25 0.74 0.56
495 22.0 30.8
2 79 (35 0.44 49 0.62 0.01
88.0 45.2 56.5
3 140 | (19 0.51 ©0 0.64 0.01

Table 13 Frequency ratios of experimental data
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Discussion of Experimental Methods

Divergence Prediction Methods

Divergence onset determination using the load monitoring method requires that data be
acquired very near divergence. Interpretation of data taken well below divergence and
examined in this way does not easily yield the divergence condition. When using load
monitoring, it appears best to use asmall, nearly zero rigid angle of attack. Theload is
proportional to the elastic increment on angle of attack. This quantity isitself an
amplification of therigid angle of attack. The amplification factor becomes very large,
theoretically goesto infinity, near divergence. Asobserved in the datafor larger rigid
angles of attack, there is a steady, gradual rise in the moment. Thisisthe effect of
applying an increasing dynamic pressure to alifting surface at a non-zero angle of attack.

Modal Characteristics Determination M ethods

Several methods were utilized to identify modal characteristics. It isnot possibleto

completely isolate a single aeroelastic mode’s behavior in an experimental setting. Thus,
the measurements of the dynamic mode properties contain some content from the static
mode of the system.

The logarithmic decrement method is a simple way to calculate damping for systems
where the damping is low. The time histories produce consistent values in these cases,
where many cycles can be included inherently in the data processing. The air off data
presented is a good example of this situation. More highly damped systems, however
produce a limited number of oscillations. In the case of the plexiglass trailing edge
configurations, there were often only one or two cycles of decaying motion to analyze,
even at very low airspeeds.

It was difficult to extract information using the logarithmic decrement method in the

vicinity of divergence. Taking several data sets or using different segments of a time
history produced very different values of damping. The overall system response is a
combination of all of the system modes. Thus the time history’s damping is not a modal
damping. Logarithmic decrement results can only be interpreted as modal damping if a
single mode is dominating the response. Near divergence, it is speculated that two modes
are contributing- a stable dynamic mode and a barely stable real mode. The calculated
damping could be the damping of one mode of the other, or more likely could indicate a
value in between them.

To utilize the logarithmic decrement technique, a disturbance must be applied to the
mode. As divergence is neared, the force with which a pluck is administered must be
reduced. Up to a certain dynamic pressure a very severe pluck can be used. This
produces more usable cycles of data. In these subcritical data sets, it is speculated that
the dominant damping effect is produced by the dynamic mode. Very near the
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divergence condition, it was difficult to pluck the model without destabilizing the system.
The dominant damping effect here is speculated to be that of the static mode of
aerodynamic origin which is very near instability.

The analysis of the logarithmic decrement data taken alone might lead one to consider
this a case of single degree of freedom flutter, where the dynamic mode destabilizes. The
additional data and analyses, however, do not support this interpretation.

An advantage to analyzing the data with frequency domain techniquesis that the
transformation process sorts the information by frequency, separating the information by
mode. The damping and frequency information pertinent to one mode is distinct from the
others, aslong as the modes are well separated. The main driver in testing configuration

3 wastto raise the frequency of the dynamic mode at divergence so that the peak could be
fully distinguished. The modal frequency of configurations 1 and 2 was low enough near
divergence, that it is speculated that there could be substantial “leakage” from the static
information into the of the dynamic mode measurements.

The frequency domain techniques encountered difficulties near divergence. At velocities
well below divergence, a frequency sweep to the gust vanes provided the system with
sufficient excitation to give clean peaks in the frequency domain. There are several
issues to overcome in applying these methods near divergence. The first is how to impart
enough energy into the dynamic mode of the system. The frequency sweeps were
effective to a dynamic pressure that is very near the soft or linear divergence condition.
Above this, sine dwell excitations had to be employed.

In doing the sine dwells, the tunnel condition had to be maintained over along period of
time. Tunnel drift is thought to have produced a change in dynamic pressure, affecting
the consistence of a set of sine dwell data. Changes in the dynamic pressure affect not
only the amplitude of the response at a given frequency, but also shifts the modal
frequency. Inability to hold tunnel condition is thought to be partly responsible for the
data scatter associated with analysis of the sine dwell data.

An additional issue with the frequency domain results is extraction of the important

parameters from the plot. The faring of the line through the data is subjective and
becomes more crucial for highly damped systems.
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CHAPTER FOUR

COMPARISON OF ANALYSISAND EXPERIMENT

The analytical and experimental results, previously presented in this paper, are compared
for each of the three wind tunnel model configurations. The subcritical elgenvalues of
the dynamic modes are compared, as well as divergence conditions.

Configuration # 2, which is described in detail in Table 4, had the lower pitch stiffness

and the lower pitchinertia. This configuration is considered first. The imaginary part,

frequency, of the eigenvalue associated with the dynamic mode is plotted as a function of
dynamic pressure in Figure 72. Analytical results are indicated by the small “x’s”, while
experimental data are indicated by the larger symbols. Experimental data acquired using
different methods are represented by the different symbols. Five modes are shown from
the analysis. Two complex aerodynamic modes are shown; they originate at low
frequency and spring rapidly to a high frequency. They do not play a role in determining
either the stability nor the subcritical characteristics of the dynamic mode of interest.

Two real modes that originate in the aerodynamic model are overplotted on the real axis.
The mode which originates as the structural dynamic mode starts at the natural frequency
of the torsion mode, 49.5 rads/sec and migrates to a lower frequency as the aeroelastic
coupling comes into play. The analytical results and experimental data agree very well.
Both analysis and experiment indicate that the frequency of the dynamic mode is
substantially non-zero at the divergence condition. The divergence dynamic pressure
predicted by the analysis is 4.6 psf. The wind tunnel model diverged at 5.1 psf and hit
the hard limit instability at 5.6 psf.
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Figure 72 Comparison of analytical and experimental resultsfor configuration # 2, frequency of
system behavior asa function of dynamic pressure

Thereal part, indicative of the damping, of the dynamic mode eigenvalueis plotted as a
function of dynamic pressurein Figure 73. Five modes are shown from the analysis.
Two of the modes originate at zero and drop rapidly. These are complex aerodynamic
modes which become very highly damped. The mode which destabilizesis areal mode
which originated in the aerodynamic model. The mode which originates as the structural
dynamic mode starts near zero and monotonically decreases throughout the dynamic
pressure range presented. The fifth mode present from the analysis originated as the
second real aerodynamic eigenvalue. The subcritical trends in the experimental curves
follow the trend of the dynamic mode. Near divergence, between 4 and 5.6 psf, thereis
substantial scatter in the experimental determination of damping. The damping values
generally lie between the analytical value for the dynamic mode and the stable
aerodynamic mode. While the experiment and analysis are not in perfect quantitative
agreement, both indicate that the dynamic mode is stable at the divergence dynamic

pressure.
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Real Part versus Dynamic Pressure 11-Mar-2000
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Figure 73 Comparison of analytical and experimental resultsfor configuration # 2, damping
behavior asa function of dynamic pressure

Thereal and imaginary parts are combined in aroot locus plot in Figure 74. For clarity,
the complex aerodynamic modes have been removed from the chart. As the reduced

velocity or dynamic pressure increases, the data progress generally downward and to the
|l eft.
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Root Locus as a function of Dynamic Pressure 11-Mar-2000
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Figure 74 Comparison of analytical and experimental resultsfor configuration # 2, root locus as
dynamic pressureisvaried

The dynamic pressure and frequency results for configuration # 2 are summarized in
Table 14.

Dynamic Pressure Freguency
(psf) (rads/sec) (H2)

Analysis.

Air-off 0 49.5 7.9

characteristics

Divergence 4.6 26.4 4.2
Experiment:

Air-off 0 49.6 7.9

characteristics

Linear System 51 22.0 35

Divergence

Hard Limit 5.6 30.8 4.9

Instability

Southwell method 55

results

Table 14 Comparison of analysis and experimental valuesfor configuration # 2
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Configuration # 1 is considered next. Again, the analytical results and experimental data
agreewell. Inthe vicinity of the divergence dynamic pressure, the experimental
frequency increases, departing from the analytically predicted frequency. Both analysis
and experiment indicate that the frequency of the dynamic mode is substantially non-zero
at the divergence condition. The divergence dynamic pressure predicted by the analysis
1S4.6 psf. Thewind tunnel model diverged at 5.1 psf and hit the hard limit instability at

5.5 psf.
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Figure 75 Comparison of analytical and experimental results for configuration # 1,
Imaginary part as a function of dynamic pressure
Thereal part, indicative of the damping, of the dynamic mode eigenvalue is plotted as a
function of dynamic pressure in Figure 76. For subcritical conditions below 4 psf the

shapes of the experimental data agree very well with the analytical dynamic mode. Near
divergence, between 4 and 5.6 psf, the measured damping values appear to follow the

real root of aerodynamic origin, which destabilizes.
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Real Part versus Dynamic Pressure 10-Mar-2000
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Figure 76 Comparison of analytical and experimental resultsfor configuration #1, real part asa
function of dynamic pressure

Thereal and imaginary parts are combined in aroot locus plot in Figure 77. Asthe

reduced velocity or dynamic pressure increases, the data progress generally downward
and to the | eft.
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Foot Locus as a function of Dynamic Pressure 10-Mar-2000
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Figure 77 Comparison of analytical and experimental resultsfor configuration #1, root locusasa
function of dynamic pressure

The dynamic pressure and frequency results for configuration # 1 are summarized in
Table 15.

Dynamic Pressure Freguency
(psf) (rads/sec) (H2)
Analysis.
Air-off 0 21.2 34
characteristics
Divergence 4.6 6.2 1.0
Experiment:
Air-off 0 214 34
characteristics
Linear System 51 9.0 14
Divergence
Hard Limit 55 13.2 21
Instability
Southwell method 51
results

Table 15 Comparison of analysis and experimental valuesfor configuration # 1
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Configuration # 3 is now examined. The frequency results, shown in Figure 78
demonstrate the best agreement between theory and experiment of the three
configurations. The analytical results and experimental data lie on top of one another
throughout the dynamic pressure range, except right at divergence. In the vicinity of the
divergence dynamic pressure, thereis a small amount of scatter in the measured
frequencies. The experimental values mainly fall slightly below the analytical
calculations. Both analysis and experiment indicate that the frequency of the dynamic
mode is approximately 45 radians/second (7.2 Hz) at the divergence condition. The
divergence dynamic pressure predicted by the analysisis 14.3 psf. The wind tunnel
model diverged at 15.2 psf and hit the hard limit instability at 16 psf.
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Figure 78 Comparison of analytical and experimental resultsfor configuration # 3; frequency versus
dynamic pressure

Thereal part, indicative of the damping, of the dynamic mode eigenvalue is plotted as a
function of dynamic pressure in Figure 79. Three modes are shown from the analysis.
The mode which destabilizes is areal mode which originated in the aerodynamic model.
The mode which originates as the structural dynamic mode starts near zero and
monotonically decreases throughout the dynamic pressure range presented. The third
mode shown originated as the second real aerodynamic eigenvalue. The trendsin the
experimental curves follow the trend of the dynamic mode. In the vicinity of divergence,
between 13 and 14.6 psf, the damping values could be interpreted as being representative
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of any of the three modes shown from the analysis. Both anlaysis and experiment
indicate that the dynamic mode is stable at the divergence dynamic pressure.
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Figure 79 Comparison of analytical and experimental resultsfor configuration # 3; damping
characteristic versus dynamic pressure

Thereal and imaginary parts are combined in aroot locus plot in Figure 80. For clarity,
the complex aerodynamic modes have been removed from the chart. Asthe reduced
velocity or dynamic pressure increases, the data progress generally downward and to the
left.
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The dynamic pressure and frequency results for configuration # 3 are summarized in

Table 16.
Dynamic Pressure Freguency
(psf) (rads/sec) (H2)

Analysis.

Air-off 0 87.3 13.9

characteristics

Divergence 14.3 46.5 7.4
Experiment:

Air-off 0 88.0 14.0

characteristics

Linear divergence 15.2 45.2 7.2

Hard instability 16.0 56.5 9.0

point

Southwell method 15.0

results

Table 16 Comparison of analysis and experimental valuesfor configuration # 3
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CHAPTER FIVE

SUMMARY OF RESULTS

Aerodastic Analysis Results

Discrete time eigenanalyses of the aeroel astic systems revealed a static instability
originating in an aerodynamic mode and also the characteristics of anoncritical structural
dynamic mode for the aeroelastic systems examined. The analytical calculations of the
divergence dynamic pressure agreed exactly with those predicted by the static
equilibrium equations.

A database generated by varying the relevant nondimensional parameters revealed that
the variation of dynamic mode frequency and damping at the divergence condition was a
complex function of elastic axis position, radius of gyration and massratio. The
dependence on torsional mode frequency was shown to be merely one of scaling. The
parametric variations revealed that there are regions within the parameter space where
divergence occurs and the dynamic mode becomes areal mode. The predominant
category of behavior, however, for the family of configurations studied was shown to be
a persistence of the dynamic mode, originating from the structural dynamics, at a non-
zero frequency as the system diverges.

Additional insight into the modeling and physics associated with system behavior can be
gained by examining the eigenvectors. The aerodynamic eigenmodes contain the
essential information of the aerodynamic model. Two static aerodynamic modes exist
which resemble the static pressure distribution over the wing elements. The complex
aerodynamic modes are oscillatory wake modes, each at a constant frequency.

The dynamic mode eigenvector of the aeroelastic analysis yields information regarding
the stability of the system. The vorticity participation factors can be analyzed to produce
the modal frequency and damping. The degree of aeroelastic coupling isindicated by the
amount of vorticity in the wing portion of the vorticity distribution contained in the
eigenvectors. Asvelocity increases, the magnitude of the vorticities on the wing
increases up to a maximum at the divergence condition.

The static mode of the aeroelastic system that diverges resembles a pressure coefficient
distribution over the airfoil, similar to the real aerodynamic modes. All of the wake
vorticity liesin the last element at low velocities. Asvelocity increases, al of the wake
elements begin to participate in the mode. Near divergence, the participation of the last
wake element drops sharply. The sign of the vorticity on this e ement changes, becoming
out of phase with the airfoil vorticity and indicating a change in stability of the mode.
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The modal vorticity ratios indicate the relative participation of the aerodynamics and
structure in each mode. Subcritically, the traditional divergent configurations have
dynamic modes which contain alarge degree of aerodynamic participation. By contrast,
the configurations studied here that diverge but also have a persistent non-zero frequency
dynamic mode have modal vorticity ratios that reflect relatively low participation of the
aerodynamics in that mode.

Eigenvector orthogonality studies showed that the physical mismatch in eigenvector

guantities requires that each portion’s orthogonality be considered separately. The wake
vorticity portion of the dynamic aeroelastic mode eigenvector behave as if the
aerodynamics are being forced at the modal frequency. Oscillations in the wake
vorticities show up strongly in the eigenvector phasing if all components of the
eigenvector are used in the comparison. The vorticity on the wing and the structural
dynamics considered separately both showed that near zero flow velocity, the dynamic
mode is nearly orthogonal to the real aerodynamic-originated modes. This reinforces the
idea that there is no coupling between the structure and the aerodynamics until the system
IS subjected to a substantial flow velocity. This orthogonality is quickly lost as the
airspeed is increased. As the velocity approaches divergence, the angle between the
dynamic mode and the unstable mode changes. The modes start to lose their
orthogonality, allowing energy transference between the modes.

Experimental Results

All three experimental configurations diverged in the wind tunnel. The divergence
dynamic pressure for configurations 1 and 2 was predicted by analysis to be identical and
was measured to be nearly the same. The physical difference between these two
configurations was that the first had the Tungsten trailing edge sections, while the second
had the Plexiglass trailing edge. Classical steady divergence analysis and the analysis
presented in this study indicate that the divergence dynamic pressure is independent of
the inertial characteristics of the system. The experimental data agrees with this
conclusion. Instability of each system was encountered at a slightly higher dynamic
pressure than the linear theory predicted for divergence.

The three configurations tested all show the continued presence of the structural dynamic
originated mode at non-zero frequency when the system becomes statically unstable.
This was indicated by the time histories as well as frequency domain analysis.

The three configurations can be compared in terms of the instability onset. The onset of
instability becomes more sudden and violent for typical sections with low inertias. This
was experienced in the testing and can be observed by comparing time histories of
destabilization, as well as by examining the divergence onset prediction results. For the
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first configuration, with large torsional inertia provided by the Tungsten trailing edge, a
gentle onset was encountered.

The destabilizing data at nonzero rigid angles of attack provide compelling evidence that
the behavior of the dynamic mode is not a strong function of the static stability of the
system. The frequency of the motion as the system destabilizes is close to the frequency
that the mode possesses at zero angle of attack for the same dynamic pressure.

Datawas aso acquired for test conditions in excess of the linear system divergence
dynamic pressure. At an angle of attack, between 8° and 11%4°, the airfoil reached
aerodynamic stall. An effect of stalling the airfoil was a reduction of the effective
aerodynamic moment; dramatic yet understandable nonlinear behavior was thereby
produced.
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CHAPTER SIX

CONCLUSIONS & SUGGESTED FUTURE WORK

The analyses and experiment presented show that aeroel astic divergence can occur
without a structural dynamic mode losing its oscillatory nature and becoming static. The
aeroelastic coupling of the static aerodynamic and structural properties that produces
divergence does not require the dynamic system behavior to cease. Aeroelastic changes
in the dynamic mode behavior are governed not only by the stiffness, but by damping and
inertial properties.

Typical section analysis and wind tunnel experiments demonstrated divergence,
destabilization in a static sense, but at the same time demonstrated that a dynamic mode
was still present in the system. These analytical and experimental results challenge the
basic assumption that divergence occurs as a structural dynamic mode becomes static. It
has been demonstrated that utilizing dynamic mode tracking to predict divergence onset
experimentally isinadvisable. The combined aerodynamic and structural stiffnessis
shown to go to zero, but the dynamic mode frequency is shown to not necessarily
disappear as the divergence condition is reached.

From this ssimple analysis and experiment, many possibilities open up for future research.
In thiswork, atypical section with asingle pitch structural freedom was employed.
Suggested future investigations include extending the structural degrees of freedom to
include the plunge mode. Inclusion of the plunge mode could simulate inclusion of rigid
body or fuselage plunge motion. Study of awing configuration would be alogical and
useful extension also.

The nonlinear behavior which was observed in the present experiment also provides an
opportunity for follow-on work. A more rigorous investigation of the behavior from a
phase plane and energy level standpoint might offer interesting results. Additionaly, a
theoretical investigation of the stall behavior is suggested, perhaps utilizing the ONERA
aerodynamic stall model*.

The analytical method of utilizing a discrete time aerodynamic model could potentially
be extended to include doubl et |attice aerodynamics. Asaworkhorse in the aeroelastic
community, an analysis using doublet lattice in this fashion would provide direct
comparison with current common analysis practices. Insight into the differences between
roots produced by eigenanalysis and Pade approximation could be gained.

Experimentally, a simple extension of this work would be to make incremental changes
ininertial propertiesin order to produce configurations where traditional divergence

! Tang, D. M., and E. H. Dowell, Comments on the ONERA Stall Aerodynamic Model and its Impact on
Aeroelastic Sability
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occurs. The current model would require relocation of the axis of rotation closer to the
center of pressure and addition of mass, external to the airflow.

Acquisition and processing of unsteady pressure data offers additional research
opportunities. The analytically determined eigenvector study has offered some insight
Into the phase rel ationship between the structural displacement and velocity and the
vorticity distribution. The vorticity or pressure distribution, measured in an experiment,
could provide additional insights. Potentially, pressure data could be examined and
proper orthogonal decomposition techniques applied to examine aerodynamic modal
participation in overall system response.
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APPENDIX A
EQUATIONSOF MOTION

NOMENCLATURE

Aerodynamic matrix

Distance from midchord to elastic axis

Aerodynamic matrix

Semi-chord

Aeroelastic force matrix

Intermediate calculation matrix, defined in equation 46
Intermediate calculation vector, defined in equation 47

Pitch mode damping

Structural dynamic matrix

Downwash matrix

Elastic axis position, measured positive aft from the center of
pressure

Aerodynamic load vector

Integral expression, see equation 40

Torsional inertia

Intermediate structural dynamic matrix, defined in equation 54
Intermediate structural dynamic matrix, defined in equation 54
Number of aerodynamic elements on the wing

Mass

Total number of aerodynamic elements

Time step number

Generalized structural coordinates

Dynamic pressure

Radius of gyration

Intermediate calculation vector, defined in equation 44
Intermediate calcul ation vector, defined in equation 45
Velocity

Reduced velocity, (V=U/wyb)

Downwash

Vector of locations of vortices in the aerodynamic model; chord-
wise location

Discrete time eigenvalue

Time step size, temporal discretization

Aerodynamic element size, spatial discretization

Vorticity vector

Aerodynamic kernel function

Torsional stiffness
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The aerodynamic model was constructed by considering time-marching relationships as
the vorticity develops on the wing and in the wake. For this study, the airfoil is modeled
asaZ2-dimensional flat plate. Theairfoil and the wake are divided into segments, referred

Moment

Aerodynamic relaxation factor

Angle of attack

Continuous time eigenvalue

Massratio

Density of air

Frequency of torsional mode (radians/second)

Vector of locations of collocation points in the aerodynamic model

Damping
Superscripts
time step number
Subscripts
Pertaining to the torsional degree of freedom
Freestream
Steady quantity
Unsteady quantity

Airfoil motion quantity

Quantity at the elastic axis

Designation for an element of a matrix which liesin theith row,
jth column

kth aerodynamic element

The Mth aerodynamic element

Quantity in the wake

Quantity on the wing

Aerodynamic eguations

to as aerodynamic elements.

The vortex lattice aerodynamics are generated by placing vortices of strengths to be

determined at points on the airfoil and in the wake. Control points, usually located aft of

the vortex locations, are points where the boundary conditions must be satisfied. Typical
placement is for the vortices to be located at the ¥-chord point of an aerodynamic
element. The control points are typically placed at the ¥%-chord locations of the elements.
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There are 3 basic relationships contained in the vortex |attice equations, detailed in the
following paragraphs, which are combined to form a matrix equation.

The velocity induced by the discrete vorticesis set equal to the downwash caused by the
airfoil’s motion, Equation 24.

n+l _ N n+l .
Wi = Y Kl Equation 24

i =1...M

The kernel function, Kij, relates the vorticity at poinftj, to the downwash generated at
point i, w. For an isolated flat-plate airfoil in two-dimensional incompressible flow is
given in Equation 25.

Kij = ; Equation 25
2r1(xi - &)

Applying Kelvin's theorem generates the second basic relationship. Quotirig Hall
“unsteady vorticity is shed into the wake; its strength is proportional to the time rate of
change of circulation about the airfoil. If the time step is taken to be equal to the time it
takes the vorticity to convect from one vortex station to the next, then the strength of the
first vortex point in the wake at the time n+1 is given by (Equation 26)”

n+l _ M n+l n
M+ == ~-Tj Equation 26
j=1

Once the vorticity has been shed into the wake, it is convected in the wake at the
freestream velocity. Convection provides the final relationship utilized in constructing
the aerodynamic equations. Fixing the time step suclhtlat) Ax, this convection is
described by Equation 27.

rin+1 = rin—l Equation 27
Jd=(M +2),(N -2

Because the wake is modeled with a finite length, the convection relationship for last
vortex element must be treated specifically. “Otherwise, the starting vortex would
disappear abruptly when it reached the end of the computational wake, producing a

! Hall, Kenneth C., Eigenanalysis of Unsteady Flows about Airfoils, Cascades and Wing
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discontinuous change in the induced wash at the airfoil. To alleviate this difficulty, ... the
vorticity is alowed to dissipate smoothly by using arelation factor, (Equation 28).”

ri”+1 =r"y+ar Equation 28
=N

The equations are combined into the matrix expression, Equation 29. The Kernel
function relationship between the vorticities on the wing and wake and downwashes on
the wing form the first M rows of the equations. Kelvin's theorem is seen as the (M+1)
row. Convection in the wake appears in rows M+1 through N.

(K11 K12 .. KM KyM+1) KyM+2) .. .. KIN[O ping(xt) o' *?
EkZl K22 .. KoM K2M+1) K2M+2) .. .. KzN% ing(x2) 0
O : : : : : I ;M : O
aﬂ\/ll KM 2 KMM KM(M +1) KM(M +2) .. .. KuND ping(xm ) U
01 1 .. 1 1 0 0 0 O %Wake(XM+l)D +
Bo 0 .. O 0 1 0 0 O %mm(xmz)%
O: i i : o .. i i@
ok : 100 % : =
Ho o0 o0 o0 0 0 .. 0 1 HI wake(xn) B
70 0 0 0 0m ping(xt) ' owlxa)d+t
0 0 0 0 0 o wing(x2) g Ew(x2)d
a: o : R ;M : o 0O : 0O
0 0 0 0 0 0 0 0 0 pinglm) o EN(XM )E
+1 - - -1 0 0 - - 0 ake(xM +1)0 =0 0 [J
Bo e v 0 -1 0 0 O 0%&vake(xM+2)g B 0 B
g+ 0 -1 " - Ly : o 0O : 0O
S st o0 odd g oo

0 O 0
Ho - - 0 0 - 0 -1 -aff wake(xn) B B 0 B

Equation 29

Rewriting Equation 29 in general terms produces Equation 30.
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[A]{r}n+1 + [B]{r}n ={W n+l Equation 30

Aerodynamic moment equations

The moment about the elastic axis generated by the aerodynamics is cal culated using the
integral expression in Equation 31. The distribution of vortex strength per unit length in
the chord-wise direction is specified as y(&). The distance from the elastic axisto the
mid-chord of the typical section, measured negative aft, is specified as ab.

Mea(t) = [ (- ab)Dy(x. 1)+ 7 ME D Equation 31

The moment equation is spatially discretized; approximations to the spatial integrals are

made. In doing so, the vorticity, y(&x), of each aerodynamic element isused. The

moment arm for the force generated by each element’s vorticity is the distance from the
vortex location to the elastic axis.

The integral is broken apart into the steady and unsteady portions, denaad M,
respectively as shown in Equation 32 and Equaion

Mo(t) = [, p(x - ab)Uy(x, t)x Equation 32
_ /b d x .
Ma(t) = [, p(x - ab)%l?t [N, t)dfgjx Equation 33

The moment at a given time, (n+142)is the sum of the steady and unsteady parts at that
time, Equation 34

Mea (0 + t)= Mo+ 1)nt)+ My + 1)) Equation 34

It is desired to express the moment in terms of the vortex strength distribution at integer
time steps. Before proceeding, the notational convention exhibited in Equation 35 is
introduced. The superscript represents the time step and the subscript represents the
spatial element location.

y(fk, (n + %)At) = y|?+% Equation 35

The vortex strength at a location on the wing is then approximated at time (At4a%2 )
the average of the value for the preceding and following time steps, Equation 36.
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)n +1
Equation 36

s o/ 4

The steady portion of the moment is approximated using a weighted summation of the

vortex strength distribution on the airfoil as shown in Equation 37. The vortex

associated with the k™ aerodynamic element islocated at {x . Thisisthe location relative

to the midchord and ab is the distance from the midchord to the elastic axis. Note that the
control or downwash point of each aerodynamic element, Xy, is located half an element

aft of the vortex location, xx= &k + Y2Ax. The moment arm for each vortex utilizes the
vortex location. The moment computation, however, is evaluated for the downwash
locations. This seeming incompatibility is necessitated by the equations to which the
moment expression is coupled in forming the governing aeroelastic system equations.

M
M OM}é O-UpAx 5 (S - ab) y Equation 37
k=1
The summation is implemented as a vector product as shown in Equation 38.
n+
M 0 2 = -Uphx mfl - ab) (52 - ab) o (fM - ab)[{]/wing}n Equation 38

The unsteady portion of the moment equation, Equation 39, is next evaluated at the time
under consideration. In addition to the vortex strengths varying with time, there is a
derivative expression which must be considered.

M{H% = .[E)b p(x - ab)%]’fb y(f)dfg1 %dx Equation 39

The internal integral at time n, evaluated at the downwash point of'therkdynamic
element is represented @ IThe integral takes on a different value for each
aerodynamic element, as the upper limit of integration is the chord-wise location of the
control point for a given element. The integral expression can be approximated as a
summation of contributions from each aerodynamic element, as shown in Equation 40.
The contribution from each element is the elemental vortex strength multiplied by the
length of the element which is upstream of the downwash point under consideration.
That is, if an element is ahead of the element under consideration, its entire length is
utilized in the calculation. If an element is behind the element under consideration, none
of its strength is used in the calculation, so it is multiplied by zero. Three-fourths of the
element being considered lies upstream of the downwash point, so % of that element’s
length is utilized in the summation. The summation is also presented in the form of a
matrix multiplication suitable for implementation.
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(k-1)
I = 2En&)de D(%,AX)VI? +AX '21 vy :Axml,kd) A O, m-k) Iﬂ/wing}n
J:

Equation 40

The time derivative of the integral expression is approximated using the central
difference theorem, Equation 41.

Ed—'g% DBALHH-% =Iﬂ+1—_In Equation 41

CdtC CAt[ At

The unsteady portion of the moment is approximated by a double summation, Equation
42, where one of the summationsisincluded in the evaluation of the integral expression.

M ntl_|n
M]r-1+% = pAszl(fk - ab)FI k A k H Equation 42

a

This can be written as a matrix product, Equation 43.

%o o
M2 0pU, I -ab) (E2-ab) - (6w ‘ab)[%;l % 6§VMng}r]+l_{VMng}r])

0 C L0
g 1 %8

Equation 43

Implementing the calculations for the steady and unsteady moments can be combined
utilizing the following matrix products, Equation 44 through Equation 47.

t1=§m;(1—ab) (E2-ab) - (Ev -ab)O Equation 44

%, 0 - 00
{f y " . O
t, = p[{f, —ab) (f2-ab) - (Ey —ab)[%: 4 OE Equation 45
9 o of
# - 1 %8

Zero padding is required to make the dimensions such that the matricesfit into the
aeroelastic system equations.
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U ED<lNe> O<1N> B Equation 46

Cr=-——2
7 b2 gt —t2) Ounewm)g

U, 0 0 0
Co=-—% tl'Ne> (LN) 0 Equation 47
mb g

{

1+12) ON-M)F
The dimensions of the coupling equations necessitate the formation of a vector
expression where the aerodynamic moment equation is the second row.

go "
fn+%: O
ea]

Equation 48

A vector containing al of the vortex strengthsis defined in Equation 49.

n Dy{lg W Z EP
rn = wing 20,0 .
= (H: O0=0: 0 Equation 49

The general form of the aerodynamic moment equation is then shown in Equation 50. It
is noted again that the first row is a zero element and only the wing elements of the
vorticity distribution are utilized in computing the aerodynamic moment.

f N+l _ Czrn+1 +Cy" Equation 50

Structural Dynamic Equations

The equations of motion for atypical section with a single pitch degree of freedom,
possessing inertia, damping and stiffness characteristics, and subjected to an aerodynamic
moment are given in Equation 51.

| o {d}+ Cola}+ Kofo}=M y Equation 51

To write the equation in terms of nondimensional quantities, Equation 51 is divided by
mass and semi-chord squared.
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rpfa}+ C% a}+rfwifal= M% 5 Equation 52
mb mb

Equation 52 can be rewritten as a set of first order equations.

b2 @:FID
The above matrices and vectors are redefined in Equation 54.

[‘J 2]{Q} + [J 1]{Q}+ {f } = {0} Equation 54

The time derivative of the generalized structural coordinate at a given time, (n+1/2)At,
can be expressed approximately using the central difference theorem, Equation 55.

g Dn+}/ g D‘”y ™ "

Ddt D DAI D At

Equation 55

The generalized structural coordinate can be approximately using the central difference
theorem.

2 o 7 QQ}nﬂ + {q}n) Equation 56

The first order equations can be written for a specific instant in time. Writing them at
time (n+ %2 At and employing the central difference approximations shown in Equations
55 and 56 leads to Equation 57.

EZ 4 Q"+ D-Jz+31§q}n {172 ={o} Equation 57

This is now in the general form represented in the main text of the paper.

D2qn+1 + qun +fMl-p Equation 58

Downwash Equations

The downwash is defined as the vertical component of velocity on the aigfodpsitive
downward. Using the velocity potential functign the downwash can be expressed in
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terms of temporal and spatial derivatives. The vertical displacement, z, is defined as
positive upward.

_ai:—aﬁ—u aﬁ

e

Equation 59

The vertical motion of the airfoil, z,, is afunction of both spatial coordinate, x, and time,
t. The motion can be represented in terms of a spatial mode shape, ®(x), and atemporal
generalized coordinate, &(t).

Za(x,t)Z CD(X)gz (t) Equation 60

The downwash expression can then be written as Equation 61, where the negative signs
have been incorporated into the mode shapes.

Wy = D(X) ag;?') +Uq Oq‘;f(x) &(t) Equation 61

The generalized coordinates and their derivatives with respect to time can be written as a
single vector.

(1)
{Q}: %@% Equation 62
Hot O

The downwash equation can be written in first order form.

Wy = @w% CD(X)gq} Equation 63

Specificaly, for the pitch degree of freedom, the vertical displacement of atypical
section isgiven in Equation 64. The displacement at a point on the airfoil is afunction of
its location, x, measured relative to the center of rotation. The sign convention utilized is
positive distance is forward of the center of rotation and angle of attack is positive nose-

up.

Zy = —Xa Equation 64

®(x) =-Xx Equation 65
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()y=a Equation 66

The downwash equation, written for a single point on the wing, in general formis given
in Equation 67.

Wy = [— Uo - X]{q} Equation 67

Formally, the generalized coordinate vector is comprised of the structural generalized
coordinate and its first derivative with respect to time. For the case of the pitch only
typical section the generalized coordinate is the angle of attack.

{a}= %{E‘ %YE Equation 68

=[.0=0. quation
X0 MO

The downwash equations can be written in the general form presented in the main text.

Equation 69
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APPENDIX B
EIGENVECTOR INVARIANCE UNDER TRANSFORMATION

NOMENCLATURE

State matrix

A general matrix

Jordan form matrix

Matrix which issimilar to B

A general matrix

Transformation matrix

Laplace variable

Time

Time step size

Laplace domain representation of state variable vector
Vector of state variables

Substitution variable for state vector, see equation 89
Unit delay operator, discrete time eigenvalue

State transition matrix

Eigenvalues of B matrix

Continuous time eigenvalue

Eigenvector

XX—H4"0goUTO®W>
=1

M > g N<

SUBCRIPTS
A,B,C,F Pertaining to matrix A, B, C, or F
C Continuous time quantity
d Discrete time quantity
et Pertaining to discrete time matrix, &'"

Theorem: The eigenvectors for the associated continuous and discrete time state space
systems are equal.

Proof.

. Let the continuous time state space equations for the unforced system be given by
Equation 70.

X(t) = AX(t) Equation 70
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A solution can be obtained by utilizing the Laplace transform, Equation 71, where X(0) is
the state of the system at the initial condition.

sX(s) = X(0) = AX(s) Equation 71

The system of equations can be rearranged asin Equation 72.

X(s)= [I s-— A]_1 X(0) Equation 72

Define the state transition matrix at atime t,d(t), asin Equation 73.

()= L‘l{[ls— A]‘l}: | + At + % At? + % At3+--- Equation 73
Rewriting in summation notation produces Equation 74.
o akik
D (t) = —A t =M Equation 74
K=o K
X(t) =D (t)x(0) Equation 75

A non-zero initial time can be accommodated in these equations,

X(t) =D (t —tg)x(tg) Equation 76

© AL(t-tg)K

d.(t—-tpy) = Equation 77
c( 0) kzo Kl
. To obtain the discrete time model with atime step size of T seconds, Equation 77
can be evaluated at timet=nT + T, with to = nT.
X(NT +T) =P (nT +T —=nT)x(nT) Equation 78
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X(N+)T) =P (T)X(NT) Equation 79
In discrete time notation, the time step size is generally omitted.
X[n+1 =P (T)X[n] Equation 80

The discrete time state space equations for the unforced system are given by Equation 81.

x(n+1)= Agx(n) Equation 81
Comparing Equation 80 Equation 81, the continuous and discrete time system matrices
arerelated as in Equation 82.

o TK
Aq = eAT = GJC(T): %Ak Equation 82
k=0 ™

The discrete time equations can thus be written as Equation 83.
x(n+1)=e”T x(n) Equation 83

. For the continuous time relationship, assume the time variation to be simple
harmonic motion, Equation 84.

x(t)=ex(0)=eé, Equation 84

An eigenvalue problem is formulated by substitution of the simple harmonic solution into
the state space equations, Equation 85.

Aép =épA Equation 85

. For the discrete time relationships, approximate the time variation as a unit delay,
Equation 86. The response of the system as an initial timeis given a new notation.

x(n) = z"x(0) = z”feAT Equation 86

An eigenvalue problem is formulated by substitution of the unit delay solution into the
discrete time state space equations, Equation 87.

eAT feAT = ZEeAT Equation 87

« Thusthe theorem can be restated as the eigenvectors of A, denoted EA, are equal
to the eigenvectors of A, denoted & ¢.
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Following the development of Kincaid and Cheney-, “if we possess the Jordan form C of
A and we know the transformation (given in Equation 88), then we can change variables
by substitution as in (Equation 89).”

{;\1A5A =C Equation 88

X=épY Equation 89

The differential equation, Equation 70, and the prescribed initial condition, x(0), can be
recast as Equation 90 and Equaton

$aY=AépY Equation 90

$A Y(O) = X(O) Equation 91

Rearranging Equation 90 produces Equation 92.

y= 5;\1A5A y Equation 92
Substituting the Jordan form matrix, C, from Equation 88 produces Equation 93.
y=Cy Equation 93

This set of equations can then be solved, Equation 94.

y(t)= eCT y(0) Equation 94

Substituting this solution into Equation 89 and reverting to the original state vector
produces Equation 95.

x(t) == & AT EA1x(0) Equation 95

Comparing Equation 95 with Equation 75 leads to the expression of the matrix
exponential in terms of the Jordan form matrix exponential, Equation 96.

eAT = EAeCT f;\l Equation 96

! Kincaid, David, and Ward Cheney, Numerical Analysis: Mathematics of Scientific Computing, page 562
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The eigenvectors of ageneral matrix, B, can be obtained from the eigenvectors of any
similar matrix, F, if the transformation between the two matricesis known. The
transformation relationship is defined, Equation 97 by the matrix R.

RIFR=B Equation 97

The eigenvalues of a matrix are invariant with coordinate transformation. The
eigenvalues of both matrices F and B are denoted 3 in this development. The

eigenvectors are denoted EB. The eigenvalue problem for B is given by Equation 98.
Bég =¢g[ Equation 98
Substituting Equation 97 and premultiplying by R results in Equation 100.
R_lFRfB =&gpl Equation 99

Examining this equation, it is recognized that thisis an eigenvalue equation for the matrix
F, where the eigenvectors are shown to be RE.

F (REB): (Rép)L Equation 100

ér =Rép Equation 101

The preceding derivation is now applied to Equation 96, making the following
substitutions.

R= E,Z\l Equation 102
F =eCT Equation 103
B= eAT Equation 104

Thisresultsin an expression for the discrete time system matrix in terms of the Jordan
form system matrix and the continuous time eigenvectors, Equation 105, and a
relationship among the eigenvectors, Equation 106.

_1 .
AT _|[-1 CT -1
e = Q(A ) e EA Equation 105
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EeCT = f,&lg(eAT Equation 106

C isthe Jordan form matrix associated with A, the continuous time system matrix. The
formulafor taking the exponential of a general matrix, Pis given in Equation 107.

PT:°°TkPk

e RS
k=0 K!

Equation 107

If Pisamatrix of diagonal elements, the P*isamatrix of each element to the k™ power.
Thus for P diagonal, € is diagonal and of the same matrix dimension. Thus, €' isa
Jordan form matrix. The case of the non-diagonal Jordan matrix has been left to the truly
inspired reader.

The eigenvectors of a Jordan form matrix form an identity matrix.
¢ o7 =1 Equation 108
Using this relationship and Equation 106 leads to Equation 109.
| = E;\lfeAT Equation 109

Therefore, the elgenvectors associated with the continuous and discrete time state space
equations are equal, Equation 110.

ép=¢ AT Equation 110
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